skip to main content


Title: Probing ternary solvent effect in high V oc polymer solar cells using advanced AFM techniques

This work describes a simple method to develop a high V oc low band gap PSCs. In addition, two new atomic force microscopy (AFM)-based nanoscale characterization techniques to study the surface morphology and physical properties of the structured active layer are introduced. With the help of ternary solvent processing of the active layer and C 60 buffer layer, a bulk heterojunction PSC with V oc more than 0.9 V and conversion efficiency 7.5% is developed. In order to understand the fundamental properties of the materials ruling the performance of the PSCs tested, AFM-based nanoscale characterization techniques including Pulsed-Force-Mode AFM (PFM-AFM) and Mode-Synthesizing AFM (MSAFM) are introduced. Interestingly, MSAFM exhibits high sensitivity for direct visualization of the donor–acceptor phases in the active layer of the PSCs. Lastly, conductive-AFM (cAFM) studies reveal local variations in conductivity in the donor and acceptor phases as well as a significant increase in photocurrent in the PTB7:ICBA sample obtained with the ternary solvent processing.
 [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [2] ;  [1] ;  [1] ;  [1]
  1. Univ. of Central Florida, Orlando, FL (United States)
  2. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Publication Date:
Grant/Contract Number:
Accepted Manuscript
Journal Name:
ACS Applied Materials and Interfaces
Additional Journal Information:
Journal Volume: 8; Journal Issue: 7; Journal ID: ISSN 1944-8244
American Chemical Society (ACS)
Research Org:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)
Sponsoring Org:
USDOE Office of Science (SC)
Country of Publication:
United States
36 MATERIALS SCIENCE; 25 ENERGY STORAGE; cascade charge transfer; donor-acceptor phases; high Voc; polymer solar cell; ternary solvent
OSTI Identifier: