DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Self-assembled asymmetric membrane containing micron-size germanium for high capacity lithium ion batteries

Abstract

We report the formation of novel asymmetric membrane electrode containing micron-size (~5 μm) germanium powders through a self-assembly phase inversion method for high capacity lithium ion battery anode. 850 mA h g-1 capacity (70%) can be retained at a current density of 600 mA g-1 after 100 cycles with excellent rate performance. Such a high retention rate has rarely been seen for pristine micron-size germanium anodes. Moreover, scanning electron microscope studies reveal that germanium powders are uniformly embedded in a networking porous structure consisting of both nanopores and macropores. It is believed that such a unique porous structure can efficiently accommodate the ~260% volume change during germanium alloying and de-alloying process, resulting in an enhanced cycling performance. Finally, these porous membrane electrodes can be manufactured in large scale using a roll-to-roll processing method.

Authors:
 [1];  [1];  [1];  [2];  [1]
  1. Georgia Southern Univ., Statesboro, GA (United States)
  2. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1265847
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
RSC Advances
Additional Journal Information:
Journal Volume: 5; Journal Issue: 113; Journal ID: ISSN 2046-2069
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE

Citation Formats

Byrd, Ian, Chen, Hao, Webber, Theron, Li, Jianlin, and Wu, Ji. Self-assembled asymmetric membrane containing micron-size germanium for high capacity lithium ion batteries. United States: N. p., 2015. Web. doi:10.1039/C5RA19208K.
Byrd, Ian, Chen, Hao, Webber, Theron, Li, Jianlin, & Wu, Ji. Self-assembled asymmetric membrane containing micron-size germanium for high capacity lithium ion batteries. United States. https://doi.org/10.1039/C5RA19208K
Byrd, Ian, Chen, Hao, Webber, Theron, Li, Jianlin, and Wu, Ji. Fri . "Self-assembled asymmetric membrane containing micron-size germanium for high capacity lithium ion batteries". United States. https://doi.org/10.1039/C5RA19208K. https://www.osti.gov/servlets/purl/1265847.
@article{osti_1265847,
title = {Self-assembled asymmetric membrane containing micron-size germanium for high capacity lithium ion batteries},
author = {Byrd, Ian and Chen, Hao and Webber, Theron and Li, Jianlin and Wu, Ji},
abstractNote = {We report the formation of novel asymmetric membrane electrode containing micron-size (~5 μm) germanium powders through a self-assembly phase inversion method for high capacity lithium ion battery anode. 850 mA h g-1 capacity (70%) can be retained at a current density of 600 mA g-1 after 100 cycles with excellent rate performance. Such a high retention rate has rarely been seen for pristine micron-size germanium anodes. Moreover, scanning electron microscope studies reveal that germanium powders are uniformly embedded in a networking porous structure consisting of both nanopores and macropores. It is believed that such a unique porous structure can efficiently accommodate the ~260% volume change during germanium alloying and de-alloying process, resulting in an enhanced cycling performance. Finally, these porous membrane electrodes can be manufactured in large scale using a roll-to-roll processing method.},
doi = {10.1039/C5RA19208K},
journal = {RSC Advances},
number = 113,
volume = 5,
place = {United States},
year = {Fri Oct 23 00:00:00 EDT 2015},
month = {Fri Oct 23 00:00:00 EDT 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 13 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Issues and challenges facing rechargeable lithium batteries
journal, November 2001

  • Tarascon, J.-M.; Armand, M.
  • Nature, Vol. 414, Issue 6861, p. 359-367
  • DOI: 10.1038/35104644

Recent advances in lithium ion battery materials
journal, May 2000


Challenges for Rechargeable Li Batteries
journal, February 2010

  • Goodenough, John B.; Kim, Youngsik
  • Chemistry of Materials, Vol. 22, Issue 3, p. 587-603
  • DOI: 10.1021/cm901452z

A Germanium-Carbon Nanocomposite Material for Lithium Batteries
journal, August 2008


High Capacity Anode Materials for Rechargeable Sodium-Ion Batteries
journal, January 2000

  • Stevens, D. A.; Dahn, J. R.
  • Journal of The Electrochemical Society, Vol. 147, Issue 4
  • DOI: 10.1149/1.1393348

Preparation of porous Si and TiO 2 nanofibres using a sulphur-templating method for lithium storage : Preparation of porous Si and TiO
journal, February 2015

  • McCormac, Kathleen; Byrd, Ian; Brannen, Rodney
  • physica status solidi (a), Vol. 212, Issue 4
  • DOI: 10.1002/pssa.201431834

Lithium-Ion (De)Insertion Reaction of Germanium Thin-Film Electrodes: An Electrochemical and In Situ XRD Study
journal, January 2009

  • Baggetto, Loïc; Notten, Peter H. L.
  • Journal of The Electrochemical Society, Vol. 156, Issue 3
  • DOI: 10.1149/1.3055984

Understanding Phase Transformation in Crystalline Ge Anodes for Li-Ion Batteries
journal, June 2014

  • Lim, Linda Y.; Liu, Nian; Cui, Yi
  • Chemistry of Materials, Vol. 26, Issue 12
  • DOI: 10.1021/cm501233k

Self-Assembled Germanium/Carbon Nanostructures as High-Power Anode Material for the Lithium-Ion Battery
journal, April 2012

  • Seng, Kuok Hau; Park, Mi-Hee; Guo, Zai Ping
  • Angewandte Chemie International Edition, Vol. 51, Issue 23
  • DOI: 10.1002/anie.201201488

Tough Germanium Nanoparticles under Electrochemical Cycling
journal, March 2013

  • Liang, Wentao; Yang, Hui; Fan, Feifei
  • ACS Nano, Vol. 7, Issue 4
  • DOI: 10.1021/nn400330h

In Situ TEM Study of Lithiation Behavior of Silicon Nanoparticles Attached to and Embedded in a Carbon Matrix
journal, August 2012


Insitu nanotomography and operando transmission X-ray microscopy of micron-sized Ge particles
journal, January 2014

  • Weker, J. Nelson; Liu, N.; Misra, S.
  • Energy Environ. Sci., Vol. 7, Issue 8
  • DOI: 10.1039/C4EE01384K

High Capacity Li Ion Battery Anodes Using Ge Nanowires
journal, January 2008

  • Chan, Candace K.; Zhang, Xiao Feng; Cui, Yi
  • Nano Letters, Vol. 8, Issue 1, p. 307-309
  • DOI: 10.1021/nl0727157

Germanium Nanotubes Prepared by Using the Kirkendall Effect as Anodes for High-Rate Lithium Batteries
journal, August 2011


Nanostructured electrodes for high-power lithium ion batteries
journal, July 2012


Honeycomb-like Macro-Germanium as High-Capacity Anodes for Lithium-Ion Batteries with Good Cycling and Rate Performance
journal, May 2015


A high-rate germanium-particle slurry cast Li-ion anode with high Coulombic efficiency and long cycle life
journal, September 2013


Inorganic Glue Enabling High Performance of Silicon Particles as Lithium Ion Battery Anode
journal, January 2011

  • Cui, Li-Feng; Hu, Liangbing; Wu, Hui
  • Journal of The Electrochemical Society, Vol. 158, Issue 5
  • DOI: 10.1149/1.3560030

Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles
journal, June 2013

  • Wu, Hui; Yu, Guihua; Pan, Lijia
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms2941

Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries
journal, November 2013

  • Wang, Chao; Wu, Hui; Chen, Zheng
  • Nature Chemistry, Vol. 5, Issue 12
  • DOI: 10.1038/nchem.1802

Reverse osmosis desalination: Water sources, technology, and today's challenges
journal, May 2009


The formation mechanism of asymmetric membranes
journal, April 1975


Phase separation phenomena during the formation of asymmetric membranes
journal, January 1977

  • Koenhen, D. M.; Mulder, M. H. V.; Smolders, C. A.
  • Journal of Applied Polymer Science, Vol. 21, Issue 1
  • DOI: 10.1002/app.1977.070210118

Operando Transmission X-ray Microscopy Studies on Li-Ion Batteries
journal, August 2014

  • Nelson Weker, Johanna; Andrews, Joy C.; Cui, Yi
  • Microscopy and Microanalysis, Vol. 20, Issue S3
  • DOI: 10.1017/S1431927614009362

High capacity group-IV elements (Si, Ge, Sn) based anodes for lithium-ion batteries
journal, September 2015


Preparation and Characterization of Membranes Formed by Nonsolvent Induced Phase Separation: A Review
journal, April 2011

  • Guillen, Gregory R.; Pan, Yinjin; Li, Minghua
  • Industrial & Engineering Chemistry Research, Vol. 50, Issue 7
  • DOI: 10.1021/ie101928r

Stable cycling of double-walled silicon nanotube battery anodes through solid–electrolyte interphase control
journal, March 2012

  • Wu, Hui; Chan, Gerentt; Choi, Jang Wook
  • Nature Nanotechnology, Vol. 7, Issue 5
  • DOI: 10.1038/nnano.2012.35

A Yolk-Shell Design for Stabilized and Scalable Li-Ion Battery Alloy Anodes
journal, May 2012

  • Liu, Nian; Wu, Hui; McDowell, Matthew T.
  • Nano Letters, Vol. 12, Issue 6
  • DOI: 10.1021/nl3014814

Photoluminescence of self-assembled Ge islands grown on Si by MBE at low temperatures
journal, July 2003

  • Rzaev, M. M.; Burbaev, T. M.; Kurbatov, V. A.
  • physica status solidi (c), Vol. 0, Issue 4
  • DOI: 10.1002/pssc.200303064

High-performance lithium-ion anodes using a hierarchical bottom-up approach
journal, March 2010

  • Magasinski, A.; Dixon, P.; Hertzberg, B.
  • Nature Materials, Vol. 9, Issue 4, p. 353-358
  • DOI: 10.1038/nmat2725

Nanocrystalline and Thin Film Germanium Electrodes with High Lithium Capacity and High Rate Capabilities
journal, January 2004

  • Graetz, J.; Ahn, C. C.; Yazami, R.
  • Journal of The Electrochemical Society, Vol. 151, Issue 5
  • DOI: 10.1149/1.1697412

Solution-Grown Germanium Nanowire Anodes for Lithium-Ion Batteries
journal, August 2012

  • Chockla, Aaron M.; Klavetter, Kyle C.; Mullins, C. Buddie
  • ACS Applied Materials & Interfaces, Vol. 4, Issue 9
  • DOI: 10.1021/am3010253

High-Capacity Anode Materials for Lithium-Ion Batteries: Choice of Elements and Structures for Active Particles
journal, October 2013

  • Nitta, Naoki; Yushin, Gleb
  • Particle & Particle Systems Characterization, Vol. 31, Issue 3
  • DOI: 10.1002/ppsc.201300231

Novel Germanium/Polypyrrole Composite for High Power Lithium-ion Batteries
journal, August 2014

  • Gao, Xuanwen; Luo, Wenbin; Zhong, Chao
  • Scientific Reports, Vol. 4, Issue 1
  • DOI: 10.1038/srep06095

Influence of grain size on lithium storage performance of germanium oxide films
journal, February 2012


Influence of carbon black and binder on Li-ion batteries
journal, October 2001


Works referencing / citing this record:

Etching Asymmetric Germanium Membranes with Hydrogen Peroxide for High‐Capacity Lithium‐Ion Battery Anodes
journal, January 2020

  • Wu, Ji; Jin, Congrui; Larson, Emilee
  • physica status solidi (a), Vol. 217, Issue 5
  • DOI: 10.1002/pssa.201900963

Toward Low-Cost, High-Energy Density, and High-Power Density Lithium-Ion Batteries
journal, June 2017


Etching Asymmetric Germanium Membranes with Hydrogen Peroxide for High‐Capacity Lithium‐Ion Battery Anodes
journal, January 2020

  • Wu, Ji; Jin, Congrui; Larson, Emilee
  • physica status solidi (a), Vol. 217, Issue 5
  • DOI: 10.1002/pssa.202070019