DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: On Field-Effect Photovoltaics: Gate Enhancement of the Power Conversion Efficiency in a Nanotube/Silicon-Nanowire Solar Cell

Abstract

Recent years have seen a resurgence of interest in crystalline silicon Schottky junction solar cells distinguished by the use of low density of electronic states (DOS) nanocarbons (nanotubes, graphene) as the metal contacting the Si. Recently, unprecedented modulation of the power conversion efficiency in a single material system has been demonstrated in such cells by the use of electronic gating. The gate field induced Fermi level shift in the low-DOS carbon serves to enhance the junction built-in potential, while a gate field induced inversion layer at the Si surface, in regions remote from the junction, keeps the photocarriers well separated there, avoiding recombination at surface traps and defects (a key loss mechanism). Here, we extend these results into the third dimension of a vertical Si nanowire array solar cell. A single wall carbon nanotube layer engineered to contact virtually each n-Si nanowire tip extracts the minority carriers, while an ionic liquid electrolytic gate drives the nanowire body into inversion. The enhanced light absorption of the vertical forest cell, at 100 mW/cm2 AM1.5G illumination, results in a short-circuit current density of 35 mA/cm2 and associated power conversion efficiency of 15%. These results highlight the use of local fields as opposed tomore » surface passivation as a means of avoiding front surface recombination. Finally, a deleterious electrochemical reaction of the silicon due to the electrolyte gating is shown to be caused by oxygen/water entrained in the ionic liquid electrolyte. While encapsulation can avoid the issue, a nonencapsulation-based approach is also implemented.« less

Authors:
 [1];  [1];  [1];  [1];  [1];  [1];  [2];  [1]
  1. Univ. of Florida, Gainesville, FL (United States)
  2. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1265827
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
ACS Applied Materials and Interfaces
Additional Journal Information:
Journal Volume: 7; Journal Issue: 38; Journal ID: ISSN 1944-8244
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
14 SOLAR ENERGY; ionic liquid; nanotube; Schottky junction; silicon; solar cell

Citation Formats

Petterson, Maureen K., Lemaitre, Maxime G., Shen, Yu, Wadhwa, Pooja, Hou, Jie, Vasilyeva, Svetlana V., Kravchenko, Ivan I., and Rinzler, Andrew G. On Field-Effect Photovoltaics: Gate Enhancement of the Power Conversion Efficiency in a Nanotube/Silicon-Nanowire Solar Cell. United States: N. p., 2015. Web. doi:10.1021/acsami.5b05010.
Petterson, Maureen K., Lemaitre, Maxime G., Shen, Yu, Wadhwa, Pooja, Hou, Jie, Vasilyeva, Svetlana V., Kravchenko, Ivan I., & Rinzler, Andrew G. On Field-Effect Photovoltaics: Gate Enhancement of the Power Conversion Efficiency in a Nanotube/Silicon-Nanowire Solar Cell. United States. https://doi.org/10.1021/acsami.5b05010
Petterson, Maureen K., Lemaitre, Maxime G., Shen, Yu, Wadhwa, Pooja, Hou, Jie, Vasilyeva, Svetlana V., Kravchenko, Ivan I., and Rinzler, Andrew G. Wed . "On Field-Effect Photovoltaics: Gate Enhancement of the Power Conversion Efficiency in a Nanotube/Silicon-Nanowire Solar Cell". United States. https://doi.org/10.1021/acsami.5b05010. https://www.osti.gov/servlets/purl/1265827.
@article{osti_1265827,
title = {On Field-Effect Photovoltaics: Gate Enhancement of the Power Conversion Efficiency in a Nanotube/Silicon-Nanowire Solar Cell},
author = {Petterson, Maureen K. and Lemaitre, Maxime G. and Shen, Yu and Wadhwa, Pooja and Hou, Jie and Vasilyeva, Svetlana V. and Kravchenko, Ivan I. and Rinzler, Andrew G.},
abstractNote = {Recent years have seen a resurgence of interest in crystalline silicon Schottky junction solar cells distinguished by the use of low density of electronic states (DOS) nanocarbons (nanotubes, graphene) as the metal contacting the Si. Recently, unprecedented modulation of the power conversion efficiency in a single material system has been demonstrated in such cells by the use of electronic gating. The gate field induced Fermi level shift in the low-DOS carbon serves to enhance the junction built-in potential, while a gate field induced inversion layer at the Si surface, in regions remote from the junction, keeps the photocarriers well separated there, avoiding recombination at surface traps and defects (a key loss mechanism). Here, we extend these results into the third dimension of a vertical Si nanowire array solar cell. A single wall carbon nanotube layer engineered to contact virtually each n-Si nanowire tip extracts the minority carriers, while an ionic liquid electrolytic gate drives the nanowire body into inversion. The enhanced light absorption of the vertical forest cell, at 100 mW/cm2 AM1.5G illumination, results in a short-circuit current density of 35 mA/cm2 and associated power conversion efficiency of 15%. These results highlight the use of local fields as opposed to surface passivation as a means of avoiding front surface recombination. Finally, a deleterious electrochemical reaction of the silicon due to the electrolyte gating is shown to be caused by oxygen/water entrained in the ionic liquid electrolyte. While encapsulation can avoid the issue, a nonencapsulation-based approach is also implemented.},
doi = {10.1021/acsami.5b05010},
journal = {ACS Applied Materials and Interfaces},
number = 38,
volume = 7,
place = {United States},
year = {Wed Sep 09 00:00:00 EDT 2015},
month = {Wed Sep 09 00:00:00 EDT 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 9 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Electronic Junction Control in a Nanotube-Semiconductor Schottky Junction Solar Cell
journal, December 2010

  • Wadhwa, Pooja; Liu, Bo; McCarthy, Mitchell A.
  • Nano Letters, Vol. 10, Issue 12
  • DOI: 10.1021/nl103128a

Electrolyte-Induced Inversion Layer Schottky Junction Solar Cells
journal, June 2011

  • Wadhwa, Pooja; Seol, Gyungseon; Petterson, Maureen K.
  • Nano Letters, Vol. 11, Issue 6
  • DOI: 10.1021/nl200811z

A 15% efficient silicon MIS solar cell
journal, October 1978

  • Godfrey, R. B.; Green, M. A.
  • Applied Physics Letters, Vol. 33, Issue 7
  • DOI: 10.1063/1.90446

655 mV open‐circuit voltage, 17.6% efficient silicon MIS solar cells
journal, June 1979

  • Godfrey, R. B.; Green, M. A.
  • Applied Physics Letters, Vol. 34, Issue 11
  • DOI: 10.1063/1.90646

Metal-insulator-semiconductor silicon solar cells
journal, February 1983


Screening-Engineered Field-Effect Solar Cells
journal, July 2012

  • Regan, William; Byrnes, Steven; Gannett, Will
  • Nano Letters, Vol. 12, Issue 8
  • DOI: 10.1021/nl3020022

Nanowire Solar Cells
journal, August 2011


Metal assisted chemical etching for high aspect ratio nanostructures: A review of characteristics and applications in photovoltaics
journal, April 2012


Aligned Single-Crystalline Si Nanowire Arrays for Photovoltaic Applications
journal, September 2005


Hybrid Heterojunction Solar Cell Based on Organic–Inorganic Silicon Nanowire Array Architecture
journal, December 2011

  • Shen, Xiaojuan; Sun, Baoquan; Liu, Dong
  • Journal of the American Chemical Society, Vol. 133, Issue 48
  • DOI: 10.1021/ja205703c

High-efficiency core–shell solar cell array from Si wafer
journal, March 2012


Realization of high performance silicon nanowire based solar cells with large size
journal, May 2013


Silicon nanowire array photoelectrochemical solar cells
journal, April 2008

  • Peng, Kuiqing; Wang, Xin; Lee, Shuit-Tong
  • Applied Physics Letters, Vol. 92, Issue 16
  • DOI: 10.1063/1.2909555

A 15% efficient antireflection‐coated metal‐oxide‐semiconductor solar cell
journal, July 1975

  • Stirn, R. J.; Yeh, Y. C. M.
  • Applied Physics Letters, Vol. 27, Issue 2
  • DOI: 10.1063/1.88375

Ambient organic molecular passivation of Si yields near-ideal, Schottky-Mott limited, junctions
journal, March 2012

  • Har-Lavan, Rotem; Yaffe, Omer; Joshi, Pranav
  • AIP Advances, Vol. 2, Issue 1
  • DOI: 10.1063/1.3694140

Recent advances in Schottky barrier concepts
journal, November 2001


Strong and reversible modulation of carbon nanotube–silicon heterojunction solar cells by an interfacial oxide layer
journal, January 2012

  • Jia, Yi; Cao, Anyuan; Kang, Feiyu
  • Physical Chemistry Chemical Physics, Vol. 14, Issue 23
  • DOI: 10.1039/c2cp23639g

Effect of Light Irradiation on Native Oxidation of Silicon Surface
journal, April 2001

  • Yoshino, Takenobu; Yokoyama, Shin; Fujii, Toshiaki
  • Japanese Journal of Applied Physics, Vol. 40, Issue Part 1, No. 4A
  • DOI: 10.1143/JJAP.40.2223

Light Induced Curing (LIC) of Passivation Layers Deposited on Native Silicon Oxide
journal, January 2012


Growth of native oxide on a silicon surface
journal, August 1990

  • Morita, M.; Ohmi, T.; Hasegawa, E.
  • Journal of Applied Physics, Vol. 68, Issue 3, p. 1272-1281
  • DOI: 10.1063/1.347181

Transparent, Conductive Carbon Nanotube Films
journal, August 2004


Record High Efficiency Single-Walled Carbon Nanotube/Silicon p n Junction Solar Cells
journal, December 2012

  • Jung, Yeonwoong; Li, Xiaokai; Rajan, Nitin K.
  • Nano Letters, Vol. 13, Issue 1
  • DOI: 10.1021/nl3035652

Vapour pressure of ionic liquids
journal, January 2010


A 14% efficient nonaqueous semiconductor/liquid junction solar cell
journal, November 1984

  • Gibbons, James F.; Cogan, George W.; Gronet, Chris M.
  • Applied Physics Letters, Vol. 45, Issue 10, p. 1095-1097
  • DOI: 10.1063/1.95028

Effect of Water on the Electrochemical Window and Potential Limits of Room-Temperature Ionic Liquids
journal, December 2008

  • O’Mahony, Aoife M.; Silvester, Debbie S.; Aldous, Leigh
  • Journal of Chemical & Engineering Data, Vol. 53, Issue 12
  • DOI: 10.1021/je800678e

Status and prospects of Al 2 O 3 -based surface passivation schemes for silicon solar cells
journal, July 2012

  • Dingemans, G.; Kessels, W. M. M.
  • Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, Vol. 30, Issue 4
  • DOI: 10.1116/1.4728205

Substrate-assisted nucleation of ultra-thin dielectric layers on graphene by atomic layer deposition
journal, April 2012

  • Dlubak, B.; Kidambi, P. R.; Weatherup, R. S.
  • Applied Physics Letters, Vol. 100, Issue 17
  • DOI: 10.1063/1.4707376

Physical operation of back-surface-field silicon solar cells
journal, April 1977


TiO2-Coated Carbon Nanotube-Silicon Solar Cells with Efficiency of 15%
journal, November 2012

  • Shi, Enzheng; Zhang, Luhui; Li, Zhen
  • Scientific Reports, Vol. 2, Issue 1
  • DOI: 10.1038/srep00884

Double-Walled Carbon Nanotube Solar Cells
journal, August 2007

  • Wei, Jinquan; Jia, Yi; Shu, Qinke
  • Nano Letters, Vol. 7, Issue 8
  • DOI: 10.1021/nl070961c

Works referencing / citing this record:

Silicon nanowire heterostructures for advanced energy and environmental applications: a review
journal, November 2016


Preparation of Hybrid Molybdenum Disulfide/Single Wall Carbon Nanotube–n-Type Silicon Solar Cells
journal, December 2019

  • Almalki, Samira; Yu, LePing; Grace, Tom
  • Applied Sciences, Vol. 10, Issue 1
  • DOI: 10.3390/app10010287

Advances in Carbon Nanotube-Silicon Heterojunction Solar Cells
journal, February 2018

  • Tune, Daniel D.; Flavel, Benjamin S.
  • Advanced Energy Materials, Vol. 8, Issue 15
  • DOI: 10.1002/aenm.201703241