DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Efficient phase contrast imaging in STEM using a pixelated detector. Part 1: Experimental demonstration at atomic resolution

Abstract

In this paper, we demonstrate a method to achieve high efficiency phase contrast imaging in aberration corrected scanning transmission electron microscopy (STEM) with a pixelated detector. The pixelated detector is used to record the Ronchigram as a function of probe position which is then analyzed with ptychography. Ptychography has previously been used to provide super-resolution beyond the diffraction limit of the optics, alongside numerically correcting for spherical aberration. Here we rely on a hardware aberration corrector to eliminate aberrations, but use the pixelated detector data set to utilize the largest possible volume of Fourier space to create high efficiency phase contrast images. The use of ptychography to diagnose the effects of chromatic aberration is also demonstrated. In conclusion, the four dimensional dataset is used to compare different bright field detector configurations from the same scan for a sample of bilayer graphene. Our method of high efficiency ptychography produces the clearest images, while annular bright field produces almost no contrast for an in-focus aberration-corrected probe.

Authors:
ORCiD logo [1];  [2];  [3];  [4];  [3];  [1]
  1. Daresbury Lab. (United Kingdom). EPSRC SuperSTEM Facility; Univ. of Oxford (United Kingdom). Dept. of Materials
  2. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division
  3. Univ. of Oxford (United Kingdom). Dept. of Materials
  4. Nion Co., Kirkland, WA (United States)
Publication Date:
Research Org.:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States); Daresbury Lab. (United Kingdom)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); Engineering and Physical Sciences Research Council (EPSRC); European Union (EU)
Contributing Org.:
Univ. of Oxford (United Kingdom)
OSTI Identifier:
1265595
Alternate Identifier(s):
OSTI ID: 1247889
Grant/Contract Number:  
AC05-00OR22725; EP/K032518/1; 312483–ESTEEM2
Resource Type:
Accepted Manuscript
Journal Name:
Ultramicroscopy
Additional Journal Information:
Journal Volume: 151; Journal ID: ISSN 0304-3991
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 47 OTHER INSTRUMENTATION; STEM; Pixelated detectors; Ptycography; Phase contrast; Chromatic aberrations; DPC; ABF

Citation Formats

Pennycook, Timothy J., Lupini, Andrew R., Yang, Hao, Murfitt, Matthew F., Jones, Lewys, and Nellist, Peter D. Efficient phase contrast imaging in STEM using a pixelated detector. Part 1: Experimental demonstration at atomic resolution. United States: N. p., 2014. Web. doi:10.1016/j.ultramic.2014.09.013.
Pennycook, Timothy J., Lupini, Andrew R., Yang, Hao, Murfitt, Matthew F., Jones, Lewys, & Nellist, Peter D. Efficient phase contrast imaging in STEM using a pixelated detector. Part 1: Experimental demonstration at atomic resolution. United States. https://doi.org/10.1016/j.ultramic.2014.09.013
Pennycook, Timothy J., Lupini, Andrew R., Yang, Hao, Murfitt, Matthew F., Jones, Lewys, and Nellist, Peter D. Wed . "Efficient phase contrast imaging in STEM using a pixelated detector. Part 1: Experimental demonstration at atomic resolution". United States. https://doi.org/10.1016/j.ultramic.2014.09.013. https://www.osti.gov/servlets/purl/1265595.
@article{osti_1265595,
title = {Efficient phase contrast imaging in STEM using a pixelated detector. Part 1: Experimental demonstration at atomic resolution},
author = {Pennycook, Timothy J. and Lupini, Andrew R. and Yang, Hao and Murfitt, Matthew F. and Jones, Lewys and Nellist, Peter D.},
abstractNote = {In this paper, we demonstrate a method to achieve high efficiency phase contrast imaging in aberration corrected scanning transmission electron microscopy (STEM) with a pixelated detector. The pixelated detector is used to record the Ronchigram as a function of probe position which is then analyzed with ptychography. Ptychography has previously been used to provide super-resolution beyond the diffraction limit of the optics, alongside numerically correcting for spherical aberration. Here we rely on a hardware aberration corrector to eliminate aberrations, but use the pixelated detector data set to utilize the largest possible volume of Fourier space to create high efficiency phase contrast images. The use of ptychography to diagnose the effects of chromatic aberration is also demonstrated. In conclusion, the four dimensional dataset is used to compare different bright field detector configurations from the same scan for a sample of bilayer graphene. Our method of high efficiency ptychography produces the clearest images, while annular bright field produces almost no contrast for an in-focus aberration-corrected probe.},
doi = {10.1016/j.ultramic.2014.09.013},
journal = {Ultramicroscopy},
number = ,
volume = 151,
place = {United States},
year = {Wed Oct 15 00:00:00 EDT 2014},
month = {Wed Oct 15 00:00:00 EDT 2014}
}

Journal Article:

Citation Metrics:
Cited by: 143 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

The Theoretical Resolution Limit of the Electron Microscope
journal, January 1949


Negative spherical aberration ultrahigh-resolution imaging in corrected transmission electron microscopy
journal, September 2009

  • Urban, Knut W.; Jia, Chun-Lin; Houben, Lothar
  • Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 367, Issue 1903
  • DOI: 10.1098/rsta.2009.0134

Invited Review Article: Methods for imaging weak-phase objects in electron microscopy
journal, November 2013

  • Glaeser, Robert M.
  • Review of Scientific Instruments, Vol. 84, Issue 11
  • DOI: 10.1063/1.4830355

Image Contrast in a Transmission Scanning Electron Microscope
journal, July 1969


Direct imaging of hydrogen-atom columns in a crystal by annular bright-field electron microscopy
journal, February 2011

  • Ishikawa, Ryo; Okunishi, Eiji; Sawada, Hidetaka
  • Nature Materials, Vol. 10, Issue 4
  • DOI: 10.1038/nmat2957

Dynamics of annular bright field imaging in scanning transmission electron microscopy
journal, June 2010


Nonstandard imaging methods in electron microscopy
journal, January 1976


The direct determination of magnetic domain wall profiles by differential phase contrast electron microscopy
journal, January 1978


Modified differential phase contrast Lorentz microscopy for improved imaging of magnetic structures
journal, January 1990

  • Chapman, J. N.; McFadyen, I. R.; McVitie, S.
  • IEEE Transactions on Magnetics, Vol. 26, Issue 5
  • DOI: 10.1109/20.104427

Experimental tests on double-resolution coherent imaging via STEM
journal, March 1993


Resolution beyond the 'information limit' in transmission electron microscopy
journal, April 1995

  • Nellist, P. D.; McCallum, B. C.; Rodenburg, J. M.
  • Nature, Vol. 374, Issue 6523
  • DOI: 10.1038/374630a0

Wave-front phase retrieval in transmission electron microscopy via ptychography
journal, September 2010


Ptychographic electron microscopy using high-angle dark-field scattering for sub-nanometre resolution imaging
journal, January 2012

  • Humphry, M. J.; Kraus, B.; Hurst, A. C.
  • Nature Communications, Vol. 3, Issue 1
  • DOI: 10.1038/ncomms1733

Ptychographic microscope for three-dimensional imaging
journal, January 2014

  • Godden, T. M.; Suman, R.; Humphry, M. J.
  • Optics Express, Vol. 22, Issue 10
  • DOI: 10.1364/OE.22.012513

Information multiplexing in ptychography
journal, March 2014


Coherent X-Ray Imaging of Collagen Fibril Distributions within Intact Tendons
journal, January 2014


Translation position determination in ptychographic coherent diffraction imaging
journal, January 2013

  • Zhang, Fucai; Peterson, Isaac; Vila-Comamala, Joan
  • Optics Express, Vol. 21, Issue 11
  • DOI: 10.1364/OE.21.013592

Soft X-ray spectromicroscopy using ptychography with randomly phased illumination
journal, April 2013

  • Maiden, A. M.; Morrison, G. R.; Kaulich, B.
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms2640

High-energy-resolution monochromator for aberration-corrected scanning transmission electron microscopy/electron energy-loss spectroscopy
journal, September 2009

  • Krivanek, Ondrej L.; Ursin, Jonathan P.; Bacon, Neil J.
  • Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 367, Issue 1903
  • DOI: 10.1098/rsta.2009.0087

Beyond the conventional information limit: the relevant coherence function
journal, May 1994


Dedicated STEM for 200 to 40 keV operation
journal, June 2011

  • Dellby, N.; Bacon, N. J.; Hrncirik, P.
  • The European Physical Journal Applied Physics, Vol. 54, Issue 3
  • DOI: 10.1051/epjap/2011100429

Quantitative Annular Dark Field Electron Microscopy Using Single Electron Signals
journal, October 2013

  • Ishikawa, Ryo; Lupini, Andrew R.; Findlay, Scott D.
  • Microscopy and Microanalysis, Vol. 20, Issue 1
  • DOI: 10.1017/S1431927613013664

First application of Cc-corrected imaging for high-resolution and energy-filtered TEM
journal, April 2009

  • Kabius, B.; Hartel, P.; Haider, M.
  • Journal of Electron Microscopy, Vol. 58, Issue 3
  • DOI: 10.1093/jmicro/dfp021

Works referencing / citing this record:

LiberTEM/LiberTEM: 0.4.1
software, February 2020


Structure retrieval with fast electrons using segmented detectors
journal, April 2016


Simultaneous atomic-resolution electron ptychography and Z-contrast imaging of light and heavy elements in complex nanostructures
journal, August 2016

  • Yang, H.; Rutte, R. N.; Jones, L.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms12532

Atomic Resolution Defocused Electron Ptychography at Low Dose with a Fast, Direct Electron Detector
journal, March 2019


LiberTEM/LiberTEM: 0.3.0
software, December 2019


Sub-Ångstrom electric field measurements on a universal detector in a scanning transmission electron microscope
journal, August 2018

  • Hachtel, Jordan A.; Idrobo, Juan Carlos; Chi, Miaofang
  • Advanced Structural and Chemical Imaging, Vol. 4, Issue 1
  • DOI: 10.1186/s40679-018-0059-4

Material structure, properties, and dynamics through scanning transmission electron microscopy
journal, April 2018

  • Pennycook, Stephen J.; Li, Changjian; Li, Mengsha
  • Journal of Analytical Science and Technology, Vol. 9, Issue 1
  • DOI: 10.1186/s40543-018-0142-4

Nanoscale stacking fault–assisted room temperature plasticity in flash-sintered TiO 2
journal, September 2019


LiberTEM/LiberTEM: 0.2.0
software, October 2019


LiberTEM/LiberTEM-blobfinder: 0.4.0
software, February 2020


Big Data Analytics for Scanning Transmission Electron Microscopy Ptychography
journal, May 2016

  • Jesse, S.; Chi, M.; Belianinov, A.
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep26348

LiberTEM/LiberTEM: 0.2.1
software, October 2019


LiberTEM/LiberTEM: 0.4.0
software, February 2020


Electrostatic subframing and compressive-sensing video in transmission electron microscopy
journal, September 2019

  • Reed, B. W.; Moghadam, A. A.; Bloom, R. S.
  • Structural Dynamics, Vol. 6, Issue 5
  • DOI: 10.1063/1.5115162

Development of Fast Pixelated STEM Detector and its Applications using 4-Dimensional Dataset
journal, July 2017


Electric field imaging of single atoms
journal, May 2017

  • Shibata, Naoya; Seki, Takehito; Sánchez-Santolino, Gabriel
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms15631

LiberTEM/LiberTEM: 0.5.1
software, August 2020


Determination of the structural phase and octahedral rotation angle in halide perovskites
journal, February 2018

  • dos Reis, Roberto; Yang, Hao; Ophus, Colin
  • Applied Physics Letters, Vol. 112, Issue 7
  • DOI: 10.1063/1.5017537

LiberTEM/LiberTEM-blobfinder: 0.4.0
software, February 2020


Scanning Transmission Electron Microscopy
book, January 2019


4D STEM: High efficiency phase contrast imaging using a fast pixelated detector
journal, October 2015


Efficient linear phase contrast in scanning transmission electron microscopy with matched illumination and detector interferometry
journal, February 2016

  • Ophus, Colin; Ciston, Jim; Pierce, Jordan
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms10719

LiberTEM/LiberTEM: 0.2.2
software, October 2019


Low Dose Imaging by STEM Ptychography Using Pixelated STEM Detector
journal, August 2018

  • Sagawa, Ryusuke; Hashiguchi, Hiroki; Isabell, Thomas
  • Microscopy and Microanalysis, Vol. 24, Issue S1
  • DOI: 10.1017/s1431927618001484

Recent breakthroughs in scanning transmission electron microscopy of small species
journal, January 2018

  • van den Bos, Karel Hendrik Wouter; Altantzis, Thomas; De Backer, Annick
  • Advances in Physics: X, Vol. 3, Issue 1
  • DOI: 10.1080/23746149.2018.1480420

Electron ptychography of 2D materials to deep sub-ångström resolution
journal, July 2018


Electron ptychographic microscopy for three-dimensional imaging
journal, July 2017


Manifold learning of four-dimensional scanning transmission electron microscopy
journal, January 2019


Subsampled STEM-ptychography
journal, July 2018

  • Stevens, Andrew; Yang, Hao; Hao, Weituo
  • Applied Physics Letters, Vol. 113, Issue 3
  • DOI: 10.1063/1.5040496

LiberTEM/LiberTEM: 0.5.0
software, April 2020


Direct Imaging of Atomically Dispersed Molybdenum that Enables Location of Aluminum in the Framework of Zeolite ZSM-5
journal, December 2019

  • Liu, Lingmei; Wang, Ning; Zhu, Chongzhi
  • Angewandte Chemie International Edition, Vol. 59, Issue 2
  • DOI: 10.1002/anie.201909834

Ptychography 4.0: 0.1.0
software, July 2021


Ptychography 4.0: 0.1.0
software, January 2021


Direct Imaging of Atomically Dispersed Molybdenum that Enables Location of Aluminum in the Framework of Zeolite ZSM‐5
journal, December 2019


Structure retrieval with fast electrons using segmented detectors
text, January 2016

  • Brown, H. G.; D'Alfonso, A. J.; Chen, Z.
  • Deutsches Elektronen-Synchrotron, DESY, Hamburg
  • DOI: 10.3204/pubdb-2017-00225

Scanning Transmission Electron Microscopy
book, January 2007


High Dynamic Range Pixel Array Detector for Scanning Transmission Electron Microscopy
text, January 2015


Materials Structure, Properties and Dynamics through Scanning Transmission Electron Microscopy
text, January 2019


Efficient linear phase contrast in scanning transmission electron microscopy with matched illumination and detector interferometry
journal, February 2016

  • Ophus, Colin; Ciston, Jim; Pierce, Jordan
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms10719

Electric field imaging of single atoms
journal, May 2017

  • Shibata, Naoya; Seki, Takehito; Sánchez-Santolino, Gabriel
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms15631

Atomic Resolution Defocused Electron Ptychography at Low Dose with a Fast, Direct Electron Detector
journal, March 2019


Big Data Analytics for Scanning Transmission Electron Microscopy Ptychography
journal, May 2016

  • Jesse, S.; Chi, M.; Belianinov, A.
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep26348

Electrostatic subframing and compressive-sensing video in transmission electron microscopy
journal, September 2019

  • Reed, B. W.; Moghadam, A. A.; Bloom, R. S.
  • Structural Dynamics, Vol. 6, Issue 5
  • DOI: 10.1063/1.5115162

Sub-Ångstrom electric field measurements on a universal detector in a scanning transmission electron microscope
journal, August 2018

  • Hachtel, Jordan A.; Idrobo, Juan Carlos; Chi, Miaofang
  • Advanced Structural and Chemical Imaging, Vol. 4, Issue 1
  • DOI: 10.1186/s40679-018-0059-4

Unraveling the 3D atomic structure of a suspended graphene/hBN van der Waals heterostructure
text, January 2017


Materials Structure, Properties and Dynamics through Scanning Transmission Electron Microscopy
text, January 2019