skip to main content


Title: Constrained Surface Complexation Modeling: Rutile in RbCl, NaCl, and NaCF 3SO 3 Media to 250 °C

In this paper, a comprehensive set of molecular-level results, primarily from classical molecular dynamics (CMD) simulations, are used to constrain CD-MUSIC surface complexation model (SCM) parameters describing rutile powder titrations conducted in RbCl, NaCl, and NaTr (Tr = triflate, CF 3SO 3 ) electrolyte media from 25 to 250 °C. Rb + primarily occupies the innermost tetradentate binding site on the rutile (110) surface at all temperatures (25, 150, 250 °C) and negative charge conditions (-0.1 and -0.2 C/m 2) probed via CMD simulations, reflecting the small hydration energy of this large, monovalent cation. Consequently, variable SCM parameters (Stern-layer capacitance values and intrinsic Rb + binding constants) were adjusted relatively easily to satisfactorily match the CMD and titration data. The larger hydration energy of Na + results in a more complex inner-sphere distribution, which shifts from bidentate to tetradentate binding with increasing negative charge and temperature, and this distribution was not matched well for both negative charge conditions, which may reflect limitations in the CMD and/or SCM approaches. Finally, in particular, the CMD axial density profiles for Rb + and Na + reveal that peak binding distances shift toward the surface with increasing negative charge, suggesting that the CD-MUSIC frameworkmore » may be improved by incorporating CD or Stern-layer capacitance values that vary with charge.« less
 [1] ;  [2] ;  [3] ;  [4]
  1. Univ. of Illinois, Champaign, IL (United States). Illinois State Water Survey
  2. Univ. of South Bohemia, Ceske Budejovice (Czech Republic). Inst. of Physics and Biophysics
  3. Texas Tech Univ., Lubbock, TX (United States). Dept. of Geosciences
  4. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Chemical Sciences Division
Publication Date:
Grant/Contract Number:
Accepted Manuscript
Journal Name:
Journal of Physical Chemistry. C
Additional Journal Information:
Journal Volume: 119; Journal Issue: 27; Journal ID: ISSN 1932-7447
American Chemical Society
Research Org:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Country of Publication:
United States
OSTI Identifier: