DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A simplified, data-constrained approach to estimate the permafrost carbon–climate feedback

Abstract

We present an approach to estimate the feedback from large-scale thawing of permafrost soils using a simplified, data-constrained model that combines three elements: soil carbon (C) maps and profiles to identify the distribution and type of C in permafrost soils; incubation experiments to quantify the rates of C lost after thaw; and models of soil thermal dynamics in response to climate warming. We call the approach the Permafrost Carbon Network Incubation-Panarctic Thermal scaling approach (PInc-PanTher). The approach assumes that C stocks do not decompose at all when frozen, but once thawed follow set decomposition trajectories as a function of soil temperature. The trajectories are determined according to a three-pool decomposition model fitted to incubation data using parameters specific to soil horizon types. We calculate litterfall C inputs required to maintain steady-state C balance for the current climate, and hold those inputs constant. Soil temperatures are taken from the soil thermal modules of ecosystem model simulations forced by a common set of future climate change anomalies under two warming scenarios over the period 2010 to 2100. Under a medium warming scenario (RCP4.5), the approach projects permafrost soil C losses of 12.2-33.4 Pg C; under a high warming scenario (RCP8.5), the approachmore » projects C losses of 27.9-112.6 Pg C. Projected C losses are roughly linearly proportional to global temperature changes across the two scenarios. These results indicate a global sensitivity of frozen soil C to climate change (γ sensitivity) of -14 to -19 PgC°C -1 on a 100 year time scale. For CH 4 emissions, our approach assumes a fixed saturated area and that increases in CH 4 emissions are related to increased heterotrophic respiration in anoxic soil, yielding CH 4 emission increases of 7% and 35% for the RCP4.5 and RCP8.5 scenarios, respectively, which add an additional greenhouse gas forcing of approximately 10-18%. The simplified approach presented here neglects many important processes that may amplify or mitigate C release from permafrost soils, but serves as a data-constrained estimate on the forced, large-scale permafrost C response to warming.« less

Authors:
 [1];  [2];  [2];  [3];  [4];  [5];  [6];  [7];  [8];  [9];  [5];  [10];  [11];  [12];  [10];  [13];  [14];  [15];  [16];  [17] more »;  [15];  [18];  [19];  [15];  [11];  [8];  [9];  [20] « less
  1. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Division
  2. Northern Arizona Univ., Flagstaff, AZ (United States). Center for Ecosystem Science and Society
  3. Univ. of Washington, Seattle, WA (United States). Dept. of Civil and Environmental Engineering; Arizona State Univ., Tempe, AZ (United States). School of Earth and Space Exploration
  4. Met Office Hadley Centre, Exeter (United Kingdom)
  5. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Environmental Sciences Division
  6. Univ. of Washington, Seattle, WA (United States). Dept. of Civil and Environmental Engineering
  7. Lab. des Sciences du Climat et de l'Environnement (LSCE), Gif-sur-Yvette (France)
  8. Alfred Wegener Inst., Helmholtz Centre for Polar and Marine Research, Potsdam (Germany). Periglacial Research Unit
  9. U.S. Geological Survey, Menlo Park, CA (United States)
  10. Stockholm Univ. (Sweden). Dept. of Physical Geography. Bolin Centre of Climate Research
  11. Univ. of Colorado, Boulder, CO (United States). National Snow and Ice Data Center
  12. CNRS and Univ. Grenoble Alpes, Grenoble (France). Lab. de Glaciologie et Geophysique de l'Environnement
  13. National Center for Atmospheric Research, Boulder, CO (United States). Climate and Global Dynamics Division
  14. Univ. of Victoria, BC (Canada). School of Earth and Ocean Sciences
  15. Univ. of Alaska, Fairbanks, AK (United States). Geophysical Inst. Permafrost Lab.
  16. Univ. of Alaska, Fairbanks, AK (United States). US Geological Survey. Alaska Cooperative Fish and Wildlife Research Unit
  17. Woods Hole Research Center, Falmouth, MA (United States)
  18. Univ. of Alberta, Edmonton, AB (Canada). Dept. of Renewable Resources
  19. Lab. des Sciences du Climat et de l'Environnement (LSCE), Gif-sur-Yvette (France); CNRS and Univ. Grenoble Alpes, Grenoble (France). Lab. de Glaciologie et Geophysique de l'Environnement
  20. Univ. of Ontario, Guelph, ON (Canada). Dept. of Integrative Biology
Publication Date:
Research Org.:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States); Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER)
Contributing Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
OSTI Identifier:
1265528
Alternate Identifier(s):
OSTI ID: 1257635; OSTI ID: 1378647
Grant/Contract Number:  
AC02-05CH11231; SC0006982; FC03-97ER62402/A010; ARC-1048997; ARC-1048987
Resource Type:
Accepted Manuscript
Journal Name:
Philosophical Transactions of the Royal Society. A, Mathematical, Physical and Engineering Sciences
Additional Journal Information:
Journal Volume: 373; Journal Issue: 2054; Journal ID: ISSN 1364-503X
Publisher:
The Royal Society Publishing
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; 29 ENERGY PLANNING, POLICY, AND ECONOMY; permafrost; climate change; carbon-climate feedbacks; methane; carbon–climate feedbacks

Citation Formats

Koven, C. D., Schuur, E. A. G., Schädel, C., Bohn, T. J., Burke, E. J., Chen, G., Chen, X., Ciais, P., Grosse, G., Harden, J. W., Hayes, D. J., Hugelius, G., Jafarov, E. E., Krinner, G., Kuhry, P., Lawrence, D. M., MacDougall, A. H., Marchenko, S. S., McGuire, A. D., Natali, S. M., Nicolsky, D. J., Olefeldt, D., Peng, S., Romanovsky, V. E., Schaefer, K. M., Strauss, J., Treat, C. C., and Turetsky, M. A simplified, data-constrained approach to estimate the permafrost carbon–climate feedback. United States: N. p., 2015. Web. doi:10.1098/rsta.2014.0423.
Koven, C. D., Schuur, E. A. G., Schädel, C., Bohn, T. J., Burke, E. J., Chen, G., Chen, X., Ciais, P., Grosse, G., Harden, J. W., Hayes, D. J., Hugelius, G., Jafarov, E. E., Krinner, G., Kuhry, P., Lawrence, D. M., MacDougall, A. H., Marchenko, S. S., McGuire, A. D., Natali, S. M., Nicolsky, D. J., Olefeldt, D., Peng, S., Romanovsky, V. E., Schaefer, K. M., Strauss, J., Treat, C. C., & Turetsky, M. A simplified, data-constrained approach to estimate the permafrost carbon–climate feedback. United States. https://doi.org/10.1098/rsta.2014.0423
Koven, C. D., Schuur, E. A. G., Schädel, C., Bohn, T. J., Burke, E. J., Chen, G., Chen, X., Ciais, P., Grosse, G., Harden, J. W., Hayes, D. J., Hugelius, G., Jafarov, E. E., Krinner, G., Kuhry, P., Lawrence, D. M., MacDougall, A. H., Marchenko, S. S., McGuire, A. D., Natali, S. M., Nicolsky, D. J., Olefeldt, D., Peng, S., Romanovsky, V. E., Schaefer, K. M., Strauss, J., Treat, C. C., and Turetsky, M. Mon . "A simplified, data-constrained approach to estimate the permafrost carbon–climate feedback". United States. https://doi.org/10.1098/rsta.2014.0423. https://www.osti.gov/servlets/purl/1265528.
@article{osti_1265528,
title = {A simplified, data-constrained approach to estimate the permafrost carbon–climate feedback},
author = {Koven, C. D. and Schuur, E. A. G. and Schädel, C. and Bohn, T. J. and Burke, E. J. and Chen, G. and Chen, X. and Ciais, P. and Grosse, G. and Harden, J. W. and Hayes, D. J. and Hugelius, G. and Jafarov, E. E. and Krinner, G. and Kuhry, P. and Lawrence, D. M. and MacDougall, A. H. and Marchenko, S. S. and McGuire, A. D. and Natali, S. M. and Nicolsky, D. J. and Olefeldt, D. and Peng, S. and Romanovsky, V. E. and Schaefer, K. M. and Strauss, J. and Treat, C. C. and Turetsky, M.},
abstractNote = {We present an approach to estimate the feedback from large-scale thawing of permafrost soils using a simplified, data-constrained model that combines three elements: soil carbon (C) maps and profiles to identify the distribution and type of C in permafrost soils; incubation experiments to quantify the rates of C lost after thaw; and models of soil thermal dynamics in response to climate warming. We call the approach the Permafrost Carbon Network Incubation-Panarctic Thermal scaling approach (PInc-PanTher). The approach assumes that C stocks do not decompose at all when frozen, but once thawed follow set decomposition trajectories as a function of soil temperature. The trajectories are determined according to a three-pool decomposition model fitted to incubation data using parameters specific to soil horizon types. We calculate litterfall C inputs required to maintain steady-state C balance for the current climate, and hold those inputs constant. Soil temperatures are taken from the soil thermal modules of ecosystem model simulations forced by a common set of future climate change anomalies under two warming scenarios over the period 2010 to 2100. Under a medium warming scenario (RCP4.5), the approach projects permafrost soil C losses of 12.2-33.4 Pg C; under a high warming scenario (RCP8.5), the approach projects C losses of 27.9-112.6 Pg C. Projected C losses are roughly linearly proportional to global temperature changes across the two scenarios. These results indicate a global sensitivity of frozen soil C to climate change (γ sensitivity) of -14 to -19 PgC°C -1 on a 100 year time scale. For CH 4 emissions, our approach assumes a fixed saturated area and that increases in CH 4 emissions are related to increased heterotrophic respiration in anoxic soil, yielding CH 4 emission increases of 7% and 35% for the RCP4.5 and RCP8.5 scenarios, respectively, which add an additional greenhouse gas forcing of approximately 10-18%. The simplified approach presented here neglects many important processes that may amplify or mitigate C release from permafrost soils, but serves as a data-constrained estimate on the forced, large-scale permafrost C response to warming.},
doi = {10.1098/rsta.2014.0423},
journal = {Philosophical Transactions of the Royal Society. A, Mathematical, Physical and Engineering Sciences},
number = 2054,
volume = 373,
place = {United States},
year = {Mon Oct 05 00:00:00 EDT 2015},
month = {Mon Oct 05 00:00:00 EDT 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 134 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Permafrost carbon−climate feedback is sensitive to deep soil carbon decomposability but not deep soil nitrogen dynamics
journal, March 2015

  • Koven, Charles D.; Lawrence, David M.; Riley, William J.
  • Proceedings of the National Academy of Sciences
  • DOI: 10.1073/pnas.1415123112

Field information links permafrost carbon to physical vulnerabilities of thawing: C AND N VULERABLITIES OF THAWING
journal, August 2012

  • Harden, Jennifer W.; Koven, Charles D.; Ping, Chien-Lu
  • Geophysical Research Letters, Vol. 39, Issue 15
  • DOI: 10.1029/2012GL051958

Quantifying Wedge-Ice Volumes in Yedoma and Thermokarst Basin Deposits: Wedge-Ice Volume Calculation in Yedoma and Thermokarst Basin Deposits
journal, June 2014

  • Ulrich, Mathias; Grosse, Guido; Strauss, Jens
  • Permafrost and Periglacial Processes, Vol. 25, Issue 3
  • DOI: 10.1002/ppp.1810

A potential loss of carbon associated with greater plant growth in the European Arctic
journal, June 2012

  • Hartley, Iain P.; Garnett, Mark H.; Sommerkorn, Martin
  • Nature Climate Change, Vol. 2, Issue 12
  • DOI: 10.1038/nclimate1575

Quantifying Carbon Cycle Feedbacks
journal, October 2009


Climate change and the permafrost carbon feedback
journal, April 2015

  • Schuur, E. A. G.; McGuire, A. D.; Schädel, C.
  • Nature, Vol. 520, Issue 7546
  • DOI: 10.1038/nature14338

Permafrost carbon: Stock and decomposability of a globally significant carbon pool
journal, January 2006

  • Zimov, S. A.; Davydov, S. P.; Zimova, G. M.
  • Geophysical Research Letters, Vol. 33, Issue 20
  • DOI: 10.1029/2006GL027484

Organic-matter quality of deep permafrost carbon – a study from Arctic Siberia
journal, January 2015


Controls over carbon storage and turnover in high-latitude soils
journal, December 2000


Amount and timing of permafrost carbon release in response to climate warming: AMOUNT AND TIMING OF PERMAFROST CARBON RELEASE
journal, February 2011


Significant contribution to climate warming from the permafrost carbon feedback
journal, September 2012

  • MacDougall, Andrew H.; Avis, Christopher A.; Weaver, Andrew J.
  • Nature Geoscience, Vol. 5, Issue 10
  • DOI: 10.1038/ngeo1573

How positive is the feedback between climate change and the carbon cycle?
journal, April 2003


A pan-Arctic synthesis of CH 4 and CO 2 production from anoxic soil incubations
journal, March 2015

  • Treat, Claire C.; Natali, Susan M.; Ernakovich, Jessica
  • Global Change Biology, Vol. 21, Issue 7
  • DOI: 10.1111/gcb.12875

Observation-based modelling of permafrost carbon fluxes with accounting for deep carbon deposits and thermokarst activity
journal, January 2015

  • Schneider von Deimling, T.; Grosse, G.; Strauss, J.
  • Biogeosciences, Vol. 12, Issue 11
  • DOI: 10.5194/bg-12-3469-2015

A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system: DVGM FOR COUPLED CLIMATE STUDIES
journal, February 2005

  • Krinner, G.; Viovy, Nicolas; de Noblet-Ducoudré, Nathalie
  • Global Biogeochemical Cycles, Vol. 19, Issue 1
  • DOI: 10.1029/2003GB002199

Grain-size properties and organic-carbon stock of Yedoma Ice Complex permafrost from the Kolyma lowland, northeastern Siberia: GRAIN-SIZE PROPERTIES AND ORGANIC-CARBON
journal, July 2012

  • Strauss, Jens; Schirrmeister, Lutz; Wetterich, Sebastian
  • Global Biogeochemical Cycles, Vol. 26, Issue 3
  • DOI: 10.1029/2011GB004104

Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model
journal, November 2000

  • Cox, Peter M.; Betts, Richard A.; Jones, Chris D.
  • Nature, Vol. 408, Issue 6809
  • DOI: 10.1038/35041539

Vulnerability of high-latitude soil organic carbon in North America to disturbance
journal, January 2011

  • Grosse, Guido; Harden, Jennifer; Turetsky, Merritt
  • Journal of Geophysical Research, Vol. 116
  • DOI: 10.1029/2010JG001507

Development of a 50-Year High-Resolution Global Dataset of Meteorological Forcings for Land Surface Modeling
journal, July 2006

  • Sheffield, Justin; Goteti, Gopi; Wood, Eric F.
  • Journal of Climate, Vol. 19, Issue 13
  • DOI: 10.1175/JCLI3790.1

The impact of the permafrost carbon feedback on global climate
journal, August 2014

  • Schaefer, Kevin; Lantuit, Hugues; Romanovsky, Vladimir E.
  • Environmental Research Letters, Vol. 9, Issue 8
  • DOI: 10.1088/1748-9326/9/8/085003

Environmental and physical controls on northern terrestrial methane emissions across permafrost zones
journal, November 2012

  • Olefeldt, David; Turetsky, Merritt R.; Crill, Patrick M.
  • Global Change Biology, Vol. 19, Issue 2
  • DOI: 10.1111/gcb.12071

Using in-situ temperature measurements to estimate saturated soil thermal properties by solving a sequence of optimization problems
journal, January 2007

  • Nicolsky, D. J.; Romanovsky, V. E.; Tipenko, G. S.
  • The Cryosphere, Vol. 1, Issue 1
  • DOI: 10.5194/tc-1-41-2007

Terrestrial biogeochemical feedbacks in the climate system
journal, July 2010

  • Arneth, A.; Harrison, S. P.; Zaehle, S.
  • Nature Geoscience, Vol. 3, Issue 8
  • DOI: 10.1038/ngeo905

On the formation of high-latitude soil carbon stocks: Effects of cryoturbation and insulation by organic matter in a land surface model
journal, January 2009

  • Koven, C.; Friedlingstein, P.; Ciais, P.
  • Geophysical Research Letters, Vol. 36, Issue 21
  • DOI: 10.1029/2009GL040150

Methane emission from natural wetlands: Global distribution, area, and environmental characteristics of sources
journal, March 1987


Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps
journal, January 2014


Estimating the Permafrost-Carbon Climate Response in the CMIP5 Climate Models Using a Simplified Approach
journal, July 2013


Three decades of global methane sources and sinks
journal, September 2013

  • Kirschke, Stefanie; Bousquet, Philippe; Ciais, Philippe
  • Nature Geoscience, Vol. 6, Issue 10
  • DOI: 10.1038/ngeo1955

Carbon–Concentration and Carbon–Climate Feedbacks in CMIP5 Earth System Models
journal, August 2013

  • Arora, Vivek K.; Boer, George J.; Friedlingstein, Pierre
  • Journal of Climate, Vol. 26, Issue 15
  • DOI: 10.1175/JCLI-D-12-00494.1

Climate sensitivity: Analysis of feedback mechanisms
book, January 1984

  • Hansen, J.; Lacis, A.; Rind, D.
  • Climate Processes and Climate Sensitivity, Vol. 29
  • DOI: 10.1029/GM029p0130

The deep permafrost carbon pool of the Yedoma region in Siberia and Alaska: DEEP CARBON OF SIBERIA AND ALASKA
journal, December 2013

  • Strauss, Jens; Schirrmeister, Lutz; Grosse, Guido
  • Geophysical Research Letters, Vol. 40, Issue 23
  • DOI: 10.1002/2013GL058088

Causes of variation in soil carbon simulations from CMIP5 Earth system models and comparison with observations
journal, January 2013

  • Todd-Brown, K. E. O.; Randerson, J. T.; Post, W. M.
  • Biogeosciences, Vol. 10, Issue 3
  • DOI: 10.5194/bg-10-1717-2013

Climate–Carbon Cycle Feedback Analysis: Results from the C 4 MIP Model Intercomparison
journal, July 2006

  • Friedlingstein, P.; Cox, P.; Betts, R.
  • Journal of Climate, Vol. 19, Issue 14
  • DOI: 10.1175/JCLI3800.1

Circumpolar assessment of permafrost C quality and its vulnerability over time using long-term incubation data
journal, October 2013

  • Schädel, Christina; Schuur, Edward A. G.; Bracho, Rosvel
  • Global Change Biology, Vol. 20, Issue 2
  • DOI: 10.1111/gcb.12417

Is the northern high-latitude land-based CO 2 sink weakening? : THE HIGH-LATITUDE CO
journal, August 2011

  • Hayes, D. J.; McGuire, A. D.; Kicklighter, D. W.
  • Global Biogeochemical Cycles, Vol. 25, Issue 3
  • DOI: 10.1029/2010GB003813

Permafrost carbon-climate feedbacks accelerate global warming
journal, August 2011

  • Koven, C. D.; Ringeval, B.; Friedlingstein, P.
  • Proceedings of the National Academy of Sciences, Vol. 108, Issue 36
  • DOI: 10.1073/pnas.1103910108

The Joint UK Land Environment Simulator (JULES), model description – Part 1: Energy and water fluxes
journal, January 2011

  • Best, M. J.; Pryor, M.; Clark, D. B.
  • Geoscientific Model Development, Vol. 4, Issue 3
  • DOI: 10.5194/gmd-4-677-2011

Analysis of Permafrost Thermal Dynamics and Response to Climate Change in the CMIP5 Earth System Models
journal, March 2013


Modeling the large-scale effects of surface moisture heterogeneity on wetland carbon fluxes in the West Siberian Lowland
journal, January 2013


Present state of global wetland extent and wetland methane modelling: conclusions from a model inter-comparison project (WETCHIMP)
journal, January 2013


A shift of thermokarst lakes from carbon sources to sinks during the Holocene epoch
journal, July 2014

  • Anthony, K. M. Walter; Zimov, S. A.; Grosse, G.
  • Nature, Vol. 511, Issue 7510
  • DOI: 10.1038/nature13560

Controls on methane released through ebullition in peatlands affected by permafrost degradation: Ebullition in peatlands with thermokarst
journal, March 2014

  • Klapstein, Sara J.; Turetsky, Merritt R.; McGuire, A. David
  • Journal of Geophysical Research: Biogeosciences, Vol. 119, Issue 3
  • DOI: 10.1002/2013JG002441

Input of easily available organic C and N stimulates microbial decomposition of soil organic matter in arctic permafrost soil
journal, August 2014


Carbon respiration from subsurface peat accelerated by climate warming in the subarctic
journal, July 2009

  • Dorrepaal, Ellen; Toet, Sylvia; van Logtestijn, Richard S. P.
  • Nature, Vol. 460, Issue 7255
  • DOI: 10.1038/nature08216

Soil organic carbon pools in the northern circumpolar permafrost region: SOIL ORGANIC CARBON POOLS
journal, June 2009

  • Tarnocai, C.; Canadell, J. G.; Schuur, E. A. G.
  • Global Biogeochemical Cycles, Vol. 23, Issue 2
  • DOI: 10.1029/2008GB003327

Fossil organic matter characteristics in permafrost deposits of the northeast Siberian Arctic
journal, January 2011

  • Schirrmeister, Lutz; Grosse, Guido; Wetterich, Sebastian
  • Journal of Geophysical Research, Vol. 116
  • DOI: 10.1029/2011JG001647

Improving simulated soil temperatures and soil freeze/thaw at high-latitude regions in the Simple Biosphere/Carnegie-Ames-Stanford Approach model
journal, January 2009

  • Schaefer, Kevin; Zhang, Tingjun; Slater, Andrew G.
  • Journal of Geophysical Research, Vol. 114, Issue F2
  • DOI: 10.1029/2008JF001125

Input of easily available organic C and N stimulates microbial decomposition of soil organic matter in arctic permafrost soil
other, January 2014

  • Wild, Birgit; Schnecker, Jörg; Alves, Ricardo J. Eloy
  • London : Elsevier Ltd.
  • DOI: 10.15488/1074

How positive is the feedback between climate change and the carbon cycle?
journal, January 2003

  • Friedlingstein, P.; Dufresne, J. -L.; Cox, P. M.
  • Tellus B: Chemical and Physical Meteorology, Vol. 55, Issue 2
  • DOI: 10.3402/tellusb.v55i2.16765

Present state of global wetland extent and wetland methane modelling: conclusions from a model intercomparison project (WETCHIMP)
journal, January 2012


Three decades of global methane sources and sinks
text, January 2013

  • Ciais, Philippe; Kummel, Paul B.; Zeng, Guang
  • Nature Publishing Group
  • DOI: 10.7892/boris.47715

Amount and timing of permafrost carbon release in response to climate warming
journal, April 2011


Observation-based modelling of permafrost carbon fluxes with accounting for deep carbon deposits and thermokarst activity
other, January 2015

  • Schneider Von Deimling, T.; Grosse, G.; Strauss, J.
  • München : European Geopyhsical Union
  • DOI: 10.34657/1134

Organic-matter quality of deep permafrost carbon
text, January 2019


The Joint UK Land Environment Simulator (JULES), Model description – Part 1: Energy and water fluxes
journal, January 2011

  • Best, M. J.; Pryor, M.; Clark, D. B.
  • Geoscientific Model Development Discussions, Vol. 4, Issue 1
  • DOI: 10.5194/gmdd-4-595-2011

Carbon respiration from subsurface peat accelerated by climate warming in the subarctic
journal, July 2009

  • Dorrepaal, Ellen; Toet, Sylvia; van Logtestijn, Richard S. P.
  • Nature, Vol. 460, Issue 7255
  • DOI: 10.1038/nature08216

A shift of thermokarst lakes from carbon sources to sinks during the Holocene epoch
journal, July 2014

  • Anthony, K. M. Walter; Zimov, S. A.; Grosse, G.
  • Nature, Vol. 511, Issue 7510
  • DOI: 10.1038/nature13560

A potential loss of carbon associated with greater plant growth in the European Arctic
journal, June 2012

  • Hartley, Iain P.; Garnett, Mark H.; Sommerkorn, Martin
  • Nature Climate Change, Vol. 2, Issue 12
  • DOI: 10.1038/nclimate1575

Three decades of global methane sources and sinks
journal, September 2013

  • Kirschke, Stefanie; Bousquet, Philippe; Ciais, Philippe
  • Nature Geoscience, Vol. 6, Issue 10
  • DOI: 10.1038/ngeo1955

Terrestrial biogeochemical feedbacks in the climate system
journal, July 2010

  • Arneth, A.; Harrison, S. P.; Zaehle, S.
  • Nature Geoscience, Vol. 3, Issue 8
  • DOI: 10.1038/ngeo905

The impact of the permafrost carbon feedback on global climate
journal, August 2014

  • Schaefer, Kevin; Lantuit, Hugues; Romanovsky, Vladimir E.
  • Environmental Research Letters, Vol. 9, Issue 8
  • DOI: 10.1088/1748-9326/9/8/085003

Environmental and physical controls on northern terrestrial methane emissions across permafrost zones
journal, November 2012

  • Olefeldt, David; Turetsky, Merritt R.; Crill, Patrick M.
  • Global Change Biology, Vol. 19, Issue 2
  • DOI: 10.1111/gcb.12071

Circumpolar assessment of permafrost C quality and its vulnerability over time using long-term incubation data
journal, October 2013

  • Schädel, Christina; Schuur, Edward A. G.; Bracho, Rosvel
  • Global Change Biology, Vol. 20, Issue 2
  • DOI: 10.1111/gcb.12417

Amount and timing of permafrost carbon release in response to climate warming: AMOUNT AND TIMING OF PERMAFROST CARBON RELEASE
journal, February 2011


How positive is the feedback between climate change and the carbon cycle?
journal, January 2003

  • Friedlingstein, P.; Dufresne, J. -L.; Cox, P. M.
  • Tellus B: Chemical and Physical Meteorology, Vol. 55, Issue 2
  • DOI: 10.3402/tellusb.v55i2.16765

Modeling the large-scale effects of surface moisture heterogeneity on wetland carbon fluxes in the West Siberian Lowland
journal, January 2013


Present state of global wetland extent and wetland methane modelling: conclusions from a model inter-comparison project (WETCHIMP)
journal, January 2013


Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps
journal, January 2014


Organic-matter quality of deep permafrost carbon – a study from Arctic Siberia
journal, January 2015


The Joint UK Land Environment Simulator (JULES), model description – Part 1: Energy and water fluxes
journal, January 2011

  • Best, M. J.; Pryor, M.; Clark, D. B.
  • Geoscientific Model Development, Vol. 4, Issue 3
  • DOI: 10.5194/gmd-4-677-2011

Using in-situ temperature measurements to estimate saturated soil thermal properties by solving a sequence of optimization problems
journal, January 2007

  • Nicolsky, D. J.; Romanovsky, V. E.; Tipenko, G. S.
  • The Cryosphere, Vol. 1, Issue 1
  • DOI: 10.5194/tc-1-41-2007

Works referencing / citing this record:

Quantifying the Effects of Snowpack on Soil Thermal and Carbon Dynamics of the Arctic Terrestrial Ecosystems
journal, April 2018

  • Lyu, Zhou; Zhuang, Qianlai
  • Journal of Geophysical Research: Biogeosciences, Vol. 123, Issue 4
  • DOI: 10.1002/2017jg003864

Short and Long-Term Controls on Active Layer and Permafrost Carbon Turnover Across the Arctic
journal, February 2018

  • Faucherre, Samuel; Jørgensen, Christian Juncher; Blok, Daan
  • Journal of Geophysical Research: Biogeosciences, Vol. 123, Issue 2
  • DOI: 10.1002/2017jg004069

The role of driving factors in historical and projected carbon dynamics of upland ecosystems in Alaska
journal, December 2017

  • Genet, Hélène; He, Yujie; Lyu, Zhou
  • Ecological Applications, Vol. 28, Issue 1
  • DOI: 10.1002/eap.1641

The role of environmental driving factors in historical and projected carbon dynamics of wetland ecosystems in Alaska
journal, December 2016

  • Lyu, Zhou; Genet, Hélène; He, Yujie
  • Ecological Applications, Vol. 28, Issue 6
  • DOI: 10.1002/eap.1755

Assessing historical and projected carbon balance of Alaska: A synthesis of results and policy/management implications
journal, July 2018

  • McGuire, A. David; Genet, Hélène; Lyu, Zhou
  • Ecological Applications, Vol. 28, Issue 6
  • DOI: 10.1002/eap.1768

Holocene thermokarst and pingo development in the Kolyma Lowland (NE Siberia)
journal, July 2018

  • Wetterich, Sebastian; Schirrmeister, Lutz; Nazarova, Larisa
  • Permafrost and Periglacial Processes, Vol. 29, Issue 3
  • DOI: 10.1002/ppp.1979

Redox and temperature-sensitive changes in microbial communities and soil chemistry dictate greenhouse gas loss from thawed permafrost
journal, July 2017

  • Ernakovich, Jessica G.; Lynch, Laurel M.; Brewer, Paul E.
  • Biogeochemistry, Vol. 134, Issue 1-2
  • DOI: 10.1007/s10533-017-0354-5

A Large Committed Long-Term Sink of Carbon due to Vegetation Dynamics
journal, October 2018

  • Pugh, T. A. M.; Jones, C. D.; Huntingford, C.
  • Earth's Future, Vol. 6, Issue 10
  • DOI: 10.1029/2018ef000935

Increasing Organic Carbon Biolability With Depth in Yedoma Permafrost: Ramifications for Future Climate Change
journal, July 2019

  • Heslop, J. K.; Winkel, M.; Walter Anthony, K. M.
  • Journal of Geophysical Research: Biogeosciences, Vol. 124, Issue 7
  • DOI: 10.1029/2018jg004712

Legacy of Holocene Landscape Changes on Soil Biogeochemistry: A Perspective From Paleo‐Active Layers in Northwestern Canada
journal, September 2019

  • Lacelle, Denis; Fontaine, Marielle; Pellerin, André
  • Journal of Geophysical Research: Biogeosciences, Vol. 124, Issue 9
  • DOI: 10.1029/2018jg004916

Rapid CO 2 Release From Eroding Permafrost in Seawater
journal, October 2019

  • Tanski, G.; Wagner, D.; Knoblauch, C.
  • Geophysical Research Letters, Vol. 46, Issue 20
  • DOI: 10.1029/2019gl084303

Permafrost collapse is accelerating carbon release
journal, April 2019


Quantifying global soil carbon losses in response to warming
journal, November 2016

  • Crowther, T. W.; Todd-Brown, K. E. O.; Rowe, C. W.
  • Nature, Vol. 540, Issue 7631
  • DOI: 10.1038/nature20150

Limited contribution of permafrost carbon to methane release from thawing peatlands
journal, June 2017

  • Cooper, Mark D. A.; Estop-Aragonés, Cristian; Fisher, James P.
  • Nature Climate Change, Vol. 7, Issue 7
  • DOI: 10.1038/nclimate3328

Determinants of carbon release from the active layer and permafrost deposits on the Tibetan Plateau
journal, October 2016

  • Chen, Leiyi; Liang, Junyi; Qin, Shuqi
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms13046

Methane emissions proportional to permafrost carbon thawed in Arctic lakes since the 1950s
journal, August 2016

  • Walter Anthony, Katey; Daanen, Ronald; Anthony, Peter
  • Nature Geoscience, Vol. 9, Issue 9
  • DOI: 10.1038/ngeo2795

21st-century modeled permafrost carbon emissions accelerated by abrupt thaw beneath lakes
journal, August 2018

  • Walter Anthony, Katey; Schneider von Deimling, Thomas; Nitze, Ingmar
  • Nature Communications, Vol. 9, Issue 1
  • DOI: 10.1038/s41467-018-05738-9

Controls of soil organic matter on soil thermal dynamics in the northern high latitudes
journal, July 2019


Path-dependent reductions in CO2 emission budgets caused by permafrost carbon release
journal, September 2018


Carbon release through abrupt permafrost thaw
journal, February 2020

  • Turetsky, Merritt R.; Abbott, Benjamin W.; Jones, Miriam C.
  • Nature Geoscience, Vol. 13, Issue 2
  • DOI: 10.1038/s41561-019-0526-0

Reduced arctic tundra productivity linked with landform and climate change interactions
journal, February 2018


Dependence of the evolution of carbon dynamics in the northern permafrost region on the trajectory of climate change
journal, March 2018

  • McGuire, A. David; Lawrence, David M.; Koven, Charles
  • Proceedings of the National Academy of Sciences, Vol. 115, Issue 15
  • DOI: 10.1073/pnas.1719903115

Trajectories of the Earth System in the Anthropocene
journal, August 2018

  • Steffen, Will; Rockström, Johan; Richardson, Katherine
  • Proceedings of the National Academy of Sciences, Vol. 115, Issue 33
  • DOI: 10.1073/pnas.1810141115

Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire: an expert assessment
journal, March 2016

  • Abbott, Benjamin W.; Jones, Jeremy B.; Schuur, Edward A. G.
  • Environmental Research Letters, Vol. 11, Issue 3
  • DOI: 10.1088/1748-9326/11/3/034014

Spatial variation in vegetation productivity trends, fire disturbance, and soil carbon across arctic-boreal permafrost ecosystems
journal, September 2016

  • Loranty, Michael M.; Lieberman-Cribbin, Wil; Berner, Logan T.
  • Environmental Research Letters, Vol. 11, Issue 9
  • DOI: 10.1088/1748-9326/11/9/095008

Pathway-dependent fate of permafrost region carbon
journal, August 2018


Divergent patterns of experimental and model-derived permafrost ecosystem carbon dynamics in response to Arctic warming
journal, October 2018

  • Schädel, Christina; Koven, Charles D.; Lawrence, David M.
  • Environmental Research Letters, Vol. 13, Issue 10
  • DOI: 10.1088/1748-9326/aae0ff

The permafrost carbon inventory on the Tibetan Plateau: a new evaluation using deep sediment cores
journal, March 2016

  • Ding, Jinzhi; Li, Fei; Yang, Guibiao
  • Global Change Biology, Vol. 22, Issue 8
  • DOI: 10.1111/gcb.13257

Warming of subarctic tundra increases emissions of all three important greenhouse gases - carbon dioxide, methane, and nitrous oxide
journal, December 2016

  • Voigt, Carolina; Lamprecht, Richard E.; Marushchak, Maija E.
  • Global Change Biology, Vol. 23, Issue 8
  • DOI: 10.1111/gcb.13563

Direct and indirect climate change effects on carbon dioxide fluxes in a thawing boreal forest-wetland landscape
journal, March 2017

  • Helbig, Manuel; Chasmer, Laura E.; Desai, Ankur R.
  • Global Change Biology, Vol. 23, Issue 8
  • DOI: 10.1111/gcb.13638

Networking our science to characterize the state, vulnerabilities, and management opportunities of soil organic matter
journal, September 2017

  • Harden, Jennifer W.; Hugelius, Gustaf; Ahlström, Anders
  • Global Change Biology, Vol. 24, Issue 2
  • DOI: 10.1111/gcb.13896

Ecosystem carbon response of an Arctic peatland to simulated permafrost thaw
journal, February 2019

  • Voigt, Carolina; Marushchak, Maija E.; Mastepanov, Mikhail
  • Global Change Biology, Vol. 25, Issue 5
  • DOI: 10.1111/gcb.14574

Terrestrial biosphere models underestimate photosynthetic capacity and CO 2 assimilation in the Arctic
journal, September 2017

  • Rogers, Alistair; Serbin, Shawn P.; Ely, Kim S.
  • New Phytologist, Vol. 216, Issue 4
  • DOI: 10.1111/nph.14740

Quantifying uncertainties of permafrost carbon–climate feedbacks
journal, January 2017


Carbon stocks and fluxes in the high latitudes: using site-level data to evaluate Earth system models
journal, January 2017

  • Chadburn, Sarah E.; Krinner, Gerhard; Porada, Philipp
  • Biogeosciences, Vol. 14, Issue 22
  • DOI: 10.5194/bg-14-5143-2017

Increasing coastal slump activity impacts the release of sediment and organic carbon into the Arctic Ocean
journal, January 2018

  • Ramage, Justine L.; Irrgang, Anna M.; Morgenstern, Anne
  • Biogeosciences, Vol. 15, Issue 5
  • DOI: 10.5194/bg-15-1483-2018

Organic matter characteristics in yedoma and thermokarst deposits on Baldwin Peninsula, west Alaska
journal, January 2018

  • Jongejans, Loeka L.; Strauss, Jens; Lenz, Josefine
  • Biogeosciences, Vol. 15, Issue 20
  • DOI: 10.5194/bg-15-6033-2018

Evaluation of terrestrial pan-Arctic carbon cycling using a data-assimilation system
journal, January 2019

  • López-Blanco, Efrén; Exbrayat, Jean-François; Lund, Magnus
  • Earth System Dynamics, Vol. 10, Issue 2
  • DOI: 10.5194/esd-10-233-2019

Process-level model evaluation: a snow and heat transfer metric
journal, January 2017

  • Slater, Andrew G.; Lawrence, David M.; Koven, Charles D.
  • The Cryosphere, Vol. 11, Issue 2
  • DOI: 10.5194/tc-11-989-2017

Organic matter characteristics in yedoma and thermokarst deposits on Baldwin Peninsula, west Alaska
text, January 2020


Path-dependent reductions in CO2 emission budgets caused by permafrost carbon release
text, January 2018

  • Gasser, T.; Kechiar, M.; Ciais, P.
  • Nature Publishing Group
  • DOI: 10.48350/155695

A Large Committed Long-Term Sink of Carbon due to Vegetation Dynamics
text, January 2018


Controls of soil organic matter on soil thermal dynamics in the northern high latitudes
journal, July 2019


Protection of Permafrost Soils from Thawing by Increasing Herbivore Density
journal, March 2020


Trajectories of the Earth System in the Anthropocene
journal, August 2018

  • Steffen, Will; Rockström, Johan; Richardson, Katherine
  • Proceedings of the National Academy of Sciences, Vol. 115, Issue 33
  • DOI: 10.1073/pnas.1810141115