skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A simplified, data-constrained approach to estimate the permafrost carbon–climate feedback

Abstract

We present an approach to estimate the feedback from large-scale thawing of permafrost soils using a simplified, data-constrained model that combines three elements: soil carbon (C) maps and profiles to identify the distribution and type of C in permafrost soils; incubation experiments to quantify the rates of C lost after thaw; and models of soil thermal dynamics in response to climate warming. We call the approach the Permafrost Carbon Network Incubation–Panarctic Thermal scaling approach (PInc-PanTher). The approach assumes that C stocks do not decompose at all when frozen, but once thawed follow set decomposition trajectories as a function of soil temperature. The trajectories are determined according to a three-pool decomposition model fitted to incubation data using parameters specific to soil horizon types. We calculate litterfall C inputs required to maintain steady-state C balance for the current climate, and hold those inputs constant. Soil temperatures are taken from the soil thermal modules of ecosystem model simulations forced by a common set of future climate change anomalies under two warming scenarios over the period 2010 to 2100. Under a medium warming scenario (RCP4.5), the approach projects permafrost soil C losses of 12.2–33.4 Pg C; under a high warming scenario (RCP8.5), the approachmore » projects C losses of 27.9–112.6 Pg C. Projected C losses are roughly linearly proportional to global temperature changes across the two scenarios. These results indicate a global sensitivity of frozen soil C to climate change (γ sensitivity) of –14 to –19 Pg C °C–1 on a 100 year time scale. For CH 4 emissions, our approach assumes a fixed saturated area and that increases in CH 4 emissions are related to increased heterotrophic respiration in anoxic soil, yielding CH 4 emission increases of 7% and 35% for the RCP4.5 and RCP8.5 scenarios, respectively, which add an additional greenhouse gas forcing of approximately 10–18%. In conclusion, the simplified approach presented here neglects many important processes that may amplify or mitigate C release from permafrost soils, but serves as a data-constrained estimate on the forced, large-scale permafrost C response to warming.« less

Authors:
 [1];  [2];  [2];  [3];  [4];  [5];  [6];  [7];  [8];  [9];  [5];  [10];  [11];  [12];  [10];  [13];  [14];  [15];  [15];  [16] more »;  [15];  [17];  [18];  [15];  [11];  [8];  [9];  [19] « less
  1. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  2. Northern Arizona Univ., Flagstaff, AZ (United States)
  3. Univ. of Washington, Seattle, WA (United States); Arizona State Univ., Tempe, AZ (United States)
  4. Met Office Hadley Centre, Exeter (United Kingdom)
  5. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  6. Univ. of Washington, Seattle, WA (United States)
  7. Lab des Sciences du Climat et de l'Environnement (LSCE CEA-CNRS-UVSQ) Gif-sur-Yvette (France)
  8. Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam (Germany)
  9. United States Geological Survey, Menlo Park, CA (United States)
  10. Stockholm Univ., Stockholm (Sweden)
  11. Univ. of Colorado, Boulder, CO (United States)
  12. Lab de Glaciologie et Geophysique de l'Environnement, CNRS and Univ. Grenoble Alpes, Grenoble (France)
  13. National Center for Atmospheric Research, Boulder, CO (United States)
  14. Univ. of Victoria, Victoria, BC (Canada)
  15. Univ. of Alaska, Fairbanks, AK (United States)
  16. Woods Hole Research Center, Falmouth, MA (United States)
  17. Univ. of Alberta, Edmonton, AB (Canada)
  18. Lab des Sciences du Climat et de l'Environnement (LSCE CEA-CNRS-UVSQ) Gif-sur-Yvette (France); Lab de Glaciologie et Geophysique de l'Environnement, CNRS and Univ. Grenoble Alpes, Grenoble (France)
  19. Univ. of Ontario, Guelph, ON (Canada)
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER) (SC-23)
Contributing Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
OSTI Identifier:
1265528
Alternate Identifier(s):
OSTI ID: 1257635; OSTI ID: 1378647
Grant/Contract Number:  
AC02-05CH11231; FC03-97ER62402/A010; ARC-1048997; ARC-1048987; SC0006982
Resource Type:
Accepted Manuscript
Journal Name:
Philosophical Transactions of the Royal Society. A, Mathematical, Physical and Engineering Sciences
Additional Journal Information:
Journal Volume: 373; Journal Issue: 2054; Journal ID: ISSN 1364-503X
Publisher:
Royal Society
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; permafrost; climate change; carbon–climate feedbacks; methane; 29 ENERGY PLANNING, POLICY, AND ECONOMY; carbon-climate feedbacks

Citation Formats

Koven, C. D., Schuur, E. A. G., Schadel, C., Bohn, T. J., Burke, E. J., Chen, G., Chen, X., Ciais, P., Grosse, G., Harden, J. W., Hayes, D. J., Hugelius, G., Jafarov, E. E., Krinner, G., Kuhry, P., Lawrence, D. M., MacDougall, A. H., Marchenko, S. S., McGuire, A. D., Natali, S. M., Nicolsky, D. J., Olefeldt, D., Peng, S., Romanovsky, V. E., Schaefer, K. M., Strauss, J., Treat, C. C., and Turetsky, M. A simplified, data-constrained approach to estimate the permafrost carbon–climate feedback. United States: N. p., 2015. Web. doi:10.1098/rsta.2014.0423.
Koven, C. D., Schuur, E. A. G., Schadel, C., Bohn, T. J., Burke, E. J., Chen, G., Chen, X., Ciais, P., Grosse, G., Harden, J. W., Hayes, D. J., Hugelius, G., Jafarov, E. E., Krinner, G., Kuhry, P., Lawrence, D. M., MacDougall, A. H., Marchenko, S. S., McGuire, A. D., Natali, S. M., Nicolsky, D. J., Olefeldt, D., Peng, S., Romanovsky, V. E., Schaefer, K. M., Strauss, J., Treat, C. C., & Turetsky, M. A simplified, data-constrained approach to estimate the permafrost carbon–climate feedback. United States. doi:10.1098/rsta.2014.0423.
Koven, C. D., Schuur, E. A. G., Schadel, C., Bohn, T. J., Burke, E. J., Chen, G., Chen, X., Ciais, P., Grosse, G., Harden, J. W., Hayes, D. J., Hugelius, G., Jafarov, E. E., Krinner, G., Kuhry, P., Lawrence, D. M., MacDougall, A. H., Marchenko, S. S., McGuire, A. D., Natali, S. M., Nicolsky, D. J., Olefeldt, D., Peng, S., Romanovsky, V. E., Schaefer, K. M., Strauss, J., Treat, C. C., and Turetsky, M. Mon . "A simplified, data-constrained approach to estimate the permafrost carbon–climate feedback". United States. doi:10.1098/rsta.2014.0423. https://www.osti.gov/servlets/purl/1265528.
@article{osti_1265528,
title = {A simplified, data-constrained approach to estimate the permafrost carbon–climate feedback},
author = {Koven, C. D. and Schuur, E. A. G. and Schadel, C. and Bohn, T. J. and Burke, E. J. and Chen, G. and Chen, X. and Ciais, P. and Grosse, G. and Harden, J. W. and Hayes, D. J. and Hugelius, G. and Jafarov, E. E. and Krinner, G. and Kuhry, P. and Lawrence, D. M. and MacDougall, A. H. and Marchenko, S. S. and McGuire, A. D. and Natali, S. M. and Nicolsky, D. J. and Olefeldt, D. and Peng, S. and Romanovsky, V. E. and Schaefer, K. M. and Strauss, J. and Treat, C. C. and Turetsky, M.},
abstractNote = {We present an approach to estimate the feedback from large-scale thawing of permafrost soils using a simplified, data-constrained model that combines three elements: soil carbon (C) maps and profiles to identify the distribution and type of C in permafrost soils; incubation experiments to quantify the rates of C lost after thaw; and models of soil thermal dynamics in response to climate warming. We call the approach the Permafrost Carbon Network Incubation–Panarctic Thermal scaling approach (PInc-PanTher). The approach assumes that C stocks do not decompose at all when frozen, but once thawed follow set decomposition trajectories as a function of soil temperature. The trajectories are determined according to a three-pool decomposition model fitted to incubation data using parameters specific to soil horizon types. We calculate litterfall C inputs required to maintain steady-state C balance for the current climate, and hold those inputs constant. Soil temperatures are taken from the soil thermal modules of ecosystem model simulations forced by a common set of future climate change anomalies under two warming scenarios over the period 2010 to 2100. Under a medium warming scenario (RCP4.5), the approach projects permafrost soil C losses of 12.2–33.4 Pg C; under a high warming scenario (RCP8.5), the approach projects C losses of 27.9–112.6 Pg C. Projected C losses are roughly linearly proportional to global temperature changes across the two scenarios. These results indicate a global sensitivity of frozen soil C to climate change (γ sensitivity) of –14 to –19 Pg C °C–1 on a 100 year time scale. For CH4 emissions, our approach assumes a fixed saturated area and that increases in CH4 emissions are related to increased heterotrophic respiration in anoxic soil, yielding CH4 emission increases of 7% and 35% for the RCP4.5 and RCP8.5 scenarios, respectively, which add an additional greenhouse gas forcing of approximately 10–18%. In conclusion, the simplified approach presented here neglects many important processes that may amplify or mitigate C release from permafrost soils, but serves as a data-constrained estimate on the forced, large-scale permafrost C response to warming.},
doi = {10.1098/rsta.2014.0423},
journal = {Philosophical Transactions of the Royal Society. A, Mathematical, Physical and Engineering Sciences},
number = 2054,
volume = 373,
place = {United States},
year = {2015},
month = {10}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 30 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Climate–Carbon Cycle Feedback Analysis: Results from the C 4 MIP Model Intercomparison
journal, July 2006

  • Friedlingstein, P.; Cox, P.; Betts, R.
  • Journal of Climate, Vol. 19, Issue 14
  • DOI: 10.1175/JCLI3800.1

Quantifying Carbon Cycle Feedbacks
journal, October 2009


Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model
journal, November 2000

  • Cox, Peter M.; Betts, Richard A.; Jones, Chris D.
  • Nature, Vol. 408, Issue 6809
  • DOI: 10.1038/35041539

How positive is the feedback between climate change and the carbon cycle?
journal, April 2003


Soil organic carbon pools in the northern circumpolar permafrost region: SOIL ORGANIC CARBON POOLS
journal, June 2009

  • Tarnocai, C.; Canadell, J. G.; Schuur, E. A. G.
  • Global Biogeochemical Cycles, Vol. 23, Issue 2
  • DOI: 10.1029/2008GB003327

Permafrost carbon: Stock and decomposability of a globally significant carbon pool
journal, January 2006

  • Zimov, S. A.; Davydov, S. P.; Zimova, G. M.
  • Geophysical Research Letters, Vol. 33, Issue 20
  • DOI: 10.1029/2006GL027484

Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps
journal, January 2014


The deep permafrost carbon pool of the Yedoma region in Siberia and Alaska: DEEP CARBON OF SIBERIA AND ALASKA
journal, December 2013

  • Strauss, Jens; Schirrmeister, Lutz; Grosse, Guido
  • Geophysical Research Letters, Vol. 40, Issue 23
  • DOI: 10.1002/2013GL058088

A shift of thermokarst lakes from carbon sources to sinks during the Holocene epoch
journal, July 2014

  • Anthony, K. M. Walter; Zimov, S. A.; Grosse, G.
  • Nature, Vol. 511, Issue 7510
  • DOI: 10.1038/nature13560

Climate change and the permafrost carbon feedback
journal, April 2015

  • Schuur, E. A. G.; McGuire, A. D.; Schädel, C.
  • Nature, Vol. 520, Issue 7546
  • DOI: 10.1038/nature14338

The impact of the permafrost carbon feedback on global climate
journal, August 2014

  • Schaefer, Kevin; Lantuit, Hugues; Romanovsky, Vladimir E.
  • Environmental Research Letters, Vol. 9, Issue 8
  • DOI: 10.1088/1748-9326/9/8/085003

Terrestrial biogeochemical feedbacks in the climate system
journal, July 2010

  • Arneth, A.; Harrison, S. P.; Zaehle, S.
  • Nature Geoscience, Vol. 3, Issue 8
  • DOI: 10.1038/ngeo905

Estimating the Permafrost-Carbon Climate Response in the CMIP5 Climate Models Using a Simplified Approach
journal, July 2013


Field information links permafrost carbon to physical vulnerabilities of thawing: C AND N VULERABLITIES OF THAWING
journal, August 2012

  • Harden, Jennifer W.; Koven, Charles D.; Ping, Chien-Lu
  • Geophysical Research Letters, Vol. 39, Issue 15
  • DOI: 10.1029/2012GL051958

Circumpolar assessment of permafrost C quality and its vulnerability over time using long-term incubation data
journal, October 2013

  • Schädel, Christina; Schuur, Edward A. G.; Bracho, Rosvel
  • Global Change Biology, Vol. 20, Issue 2
  • DOI: 10.1111/gcb.12417

A pan-Arctic synthesis of CH 4 and CO 2 production from anoxic soil incubations
journal, March 2015

  • Treat, Claire C.; Natali, Susan M.; Ernakovich, Jessica
  • Global Change Biology, Vol. 21, Issue 7
  • DOI: 10.1111/gcb.12875

Analysis of Permafrost Thermal Dynamics and Response to Climate Change in the CMIP5 Earth System Models
journal, March 2013


Causes of variation in soil carbon simulations from CMIP5 Earth system models and comparison with observations
journal, January 2013

  • Todd-Brown, K. E. O.; Randerson, J. T.; Post, W. M.
  • Biogeosciences, Vol. 10, Issue 3
  • DOI: 10.5194/bg-10-1717-2013

Carbon respiration from subsurface peat accelerated by climate warming in the subarctic
journal, July 2009

  • Dorrepaal, Ellen; Toet, Sylvia; van Logtestijn, Richard S. P.
  • Nature, Vol. 460, Issue 7255
  • DOI: 10.1038/nature08216

Fossil organic matter characteristics in permafrost deposits of the northeast Siberian Arctic
journal, January 2011

  • Schirrmeister, Lutz; Grosse, Guido; Wetterich, Sebastian
  • Journal of Geophysical Research, Vol. 116
  • DOI: 10.1029/2011JG001647

Grain-size properties and organic-carbon stock of Yedoma Ice Complex permafrost from the Kolyma lowland, northeastern Siberia: GRAIN-SIZE PROPERTIES AND ORGANIC-CARBON
journal, July 2012

  • Strauss, Jens; Schirrmeister, Lutz; Wetterich, Sebastian
  • Global Biogeochemical Cycles, Vol. 26, Issue 3
  • DOI: 10.1029/2011GB004104

Organic-matter quality of deep permafrost carbon – a study from Arctic Siberia
journal, January 2015


Quantifying Wedge-Ice Volumes in Yedoma and Thermokarst Basin Deposits: Wedge-Ice Volume Calculation in Yedoma and Thermokarst Basin Deposits
journal, June 2014

  • Ulrich, Mathias; Grosse, Guido; Strauss, Jens
  • Permafrost and Periglacial Processes, Vol. 25, Issue 3
  • DOI: 10.1002/ppp.1810

Environmental and physical controls on northern terrestrial methane emissions across permafrost zones
journal, November 2012

  • Olefeldt, David; Turetsky, Merritt R.; Crill, Patrick M.
  • Global Change Biology, Vol. 19, Issue 2
  • DOI: 10.1111/gcb.12071

Present state of global wetland extent and wetland methane modelling: conclusions from a model inter-comparison project (WETCHIMP)
journal, January 2013


Controls on methane released through ebullition in peatlands affected by permafrost degradation: Ebullition in peatlands with thermokarst
journal, March 2014

  • Klapstein, Sara J.; Turetsky, Merritt R.; McGuire, A. David
  • Journal of Geophysical Research: Biogeosciences, Vol. 119, Issue 3
  • DOI: 10.1002/2013JG002441

Three decades of global methane sources and sinks
journal, September 2013

  • Kirschke, Stefanie; Bousquet, Philippe; Ciais, Philippe
  • Nature Geoscience, Vol. 6, Issue 10
  • DOI: 10.1038/ngeo1955

Methane emission from natural wetlands: Global distribution, area, and environmental characteristics of sources
journal, March 1987


Using in-situ temperature measurements to estimate saturated soil thermal properties by solving a sequence of optimization problems
journal, January 2007

  • Nicolsky, D. J.; Romanovsky, V. E.; Tipenko, G. S.
  • The Cryosphere, Vol. 1, Issue 1
  • DOI: 10.5194/tc-1-41-2007

The Joint UK Land Environment Simulator (JULES), model description – Part 1: Energy and water fluxes
journal, January 2011

  • Best, M. J.; Pryor, M.; Clark, D. B.
  • Geoscientific Model Development, Vol. 4, Issue 3
  • DOI: 10.5194/gmd-4-677-2011

On the formation of high-latitude soil carbon stocks: Effects of cryoturbation and insulation by organic matter in a land surface model
journal, January 2009

  • Koven, C.; Friedlingstein, P.; Ciais, P.
  • Geophysical Research Letters, Vol. 36, Issue 21
  • DOI: 10.1029/2009GL040150

A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system: DVGM FOR COUPLED CLIMATE STUDIES
journal, February 2005

  • Krinner, G.; Viovy, Nicolas; de Noblet-Ducoudré, Nathalie
  • Global Biogeochemical Cycles, Vol. 19, Issue 1
  • DOI: 10.1029/2003GB002199

Amount and timing of permafrost carbon release in response to climate warming: AMOUNT AND TIMING OF PERMAFROST CARBON RELEASE
journal, February 2011


Improving simulated soil temperatures and soil freeze/thaw at high-latitude regions in the Simple Biosphere/Carnegie-Ames-Stanford Approach model
journal, January 2009

  • Schaefer, Kevin; Zhang, Tingjun; Slater, Andrew G.
  • Journal of Geophysical Research, Vol. 114, Issue F2
  • DOI: 10.1029/2008JF001125

Is the northern high-latitude land-based CO 2 sink weakening? : THE HIGH-LATITUDE CO
journal, August 2011

  • Hayes, D. J.; McGuire, A. D.; Kicklighter, D. W.
  • Global Biogeochemical Cycles, Vol. 25, Issue 3
  • DOI: 10.1029/2010GB003813

Significant contribution to climate warming from the permafrost carbon feedback
journal, September 2012

  • MacDougall, Andrew H.; Avis, Christopher A.; Weaver, Andrew J.
  • Nature Geoscience, Vol. 5, Issue 10
  • DOI: 10.1038/ngeo1573

Modeling the large-scale effects of surface moisture heterogeneity on wetland carbon fluxes in the West Siberian Lowland
journal, January 2013


Development of a 50-Year High-Resolution Global Dataset of Meteorological Forcings for Land Surface Modeling
journal, July 2006

  • Sheffield, Justin; Goteti, Gopi; Wood, Eric F.
  • Journal of Climate, Vol. 19, Issue 13
  • DOI: 10.1175/JCLI3790.1

Controls over carbon storage and turnover in high-latitude soils
journal, December 2000


Observation-based modelling of permafrost carbon fluxes with accounting for deep carbon deposits and thermokarst activity
journal, January 2015

  • Schneider von Deimling, T.; Grosse, G.; Strauss, J.
  • Biogeosciences, Vol. 12, Issue 11
  • DOI: 10.5194/bg-12-3469-2015

A potential loss of carbon associated with greater plant growth in the European Arctic
journal, June 2012

  • Hartley, Iain P.; Garnett, Mark H.; Sommerkorn, Martin
  • Nature Climate Change, Vol. 2, Issue 12
  • DOI: 10.1038/nclimate1575

Carbon–Concentration and Carbon–Climate Feedbacks in CMIP5 Earth System Models
journal, August 2013

  • Arora, Vivek K.; Boer, George J.; Friedlingstein, Pierre
  • Journal of Climate, Vol. 26, Issue 15
  • DOI: 10.1175/JCLI-D-12-00494.1

Vulnerability of high-latitude soil organic carbon in North America to disturbance
journal, January 2011

  • Grosse, Guido; Harden, Jennifer; Turetsky, Merritt
  • Journal of Geophysical Research, Vol. 116
  • DOI: 10.1029/2010JG001507

Input of easily available organic C and N stimulates microbial decomposition of soil organic matter in arctic permafrost soil
journal, August 2014


Permafrost carbon-climate feedbacks accelerate global warming
journal, August 2011

  • Koven, C. D.; Ringeval, B.; Friedlingstein, P.
  • Proceedings of the National Academy of Sciences, Vol. 108, Issue 36
  • DOI: 10.1073/pnas.1103910108

    Works referencing / citing this record:

    The role of driving factors in historical and projected carbon dynamics of upland ecosystems in Alaska
    journal, December 2017

    • Genet, Hélène; He, Yujie; Lyu, Zhou
    • Ecological Applications, Vol. 28, Issue 1
    • DOI: 10.1002/eap.1641

    The role of environmental driving factors in historical and projected carbon dynamics of wetland ecosystems in Alaska
    journal, December 2016

    • Lyu, Zhou; Genet, Hélène; He, Yujie
    • Ecological Applications, Vol. 28, Issue 6
    • DOI: 10.1002/eap.1755

    Assessing historical and projected carbon balance of Alaska: A synthesis of results and policy/management implications
    journal, July 2018

    • McGuire, A. David; Genet, Hélène; Lyu, Zhou
    • Ecological Applications, Vol. 28, Issue 6
    • DOI: 10.1002/eap.1768

    Carbon stocks and fluxes in the high latitudes: using site-level data to evaluate Earth system models
    journal, January 2017

    • Chadburn, Sarah E.; Krinner, Gerhard; Porada, Philipp
    • Biogeosciences, Vol. 14, Issue 22
    • DOI: 10.5194/bg-14-5143-2017

    Process-level model evaluation: a snow and heat transfer metric
    journal, January 2017

    • Slater, Andrew G.; Lawrence, David M.; Koven, Charles D.
    • The Cryosphere, Vol. 11, Issue 2
    • DOI: 10.5194/tc-11-989-2017