DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Stress effects on the initial lithiation of crystalline silicon nanowires: Reactive molecular dynamics simulations using ReaxFF

Abstract

Silicon (Si) has been recognized as a promising anode material for the next-generation high-capacity lithium (Li)-ion batteries because of its high theoretical energy density. Recent in situ transmission electron microscopy (TEM) revealed that the electrochemical lithiation of crystalline Si nanowires (c-SiNWs) proceeds by the migration of the interface between the lithiated Si (LixSi) shell and the pristine unlithiated core, accompanied by solid-state amorphization. The underlying atomic mechanisms of Li insertion into c-Si remain poorly understood. In this research, we perform molecular dynamics (MD) simulations using the reactive force field (ReaxFF) to characterize the lithiation process of c-SiNWs. Our calculations show that ReaxFF can accurately reproduce the energy barriers of Li migration from DFT calculations in both crystalline (c-Si) and amorphous Si (a-Si). The ReaxFF-based MD simulations reveal that Li insertion into interlayer spacing between two adjacent (111) planes results in the peeling-off of the (111) facets and subsequent amorphization, in agreement with experimental observations. We find that breaking of the Si–Si bonds between (111)-bilayers requires a rather high local Li concentration, which explains the atomically sharp amorphous–crystalline interface (ACI). Our stress analysis shows that lithiation induces compressive stress at the ACI layer, causing retardation or even the stagnation of themore » reaction front, also in good agreement with TEM observations. Lithiation at high temperatures (e.g. 1200 K) shows that Li insertion into c-SiNW results in an amorphous to crystalline phase transformation at Li : Si composition of ~4.2:1. In conclusion, our modeling results provide a comprehensive picture of the effects of reaction and diffusion-induced stress on the interfacial dynamics and mechanical degradation of SiNW anodes under chemo-mechanical lithiation.« less

Authors:
 [1];  [2];  [2];  [2];  [1];
  1. Pennsylvania State Univ., University Park, PA (United States)
  2. Harvard Univ., Cambridge, MA (United States)
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Energy Frontier Research Centers (EFRC) (United States). Fluid Interface Reactions, Structures and Transport Center (FIRST)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1265270
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
Physical Chemistry Chemical Physics. PCCP
Additional Journal Information:
Journal Volume: 17; Journal Issue: 5; Journal ID: ISSN 1463-9076
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 25 ENERGY STORAGE

Citation Formats

Ostadhossein, Alireza, Cubuk, Ekin D., Tritsaris, Georgios A., Kaxiras, Efthimios, Zhang, Sulin, and Adri C. T. van Duin. Stress effects on the initial lithiation of crystalline silicon nanowires: Reactive molecular dynamics simulations using ReaxFF. United States: N. p., 2014. Web. doi:10.1039/C4CP05198J.
Ostadhossein, Alireza, Cubuk, Ekin D., Tritsaris, Georgios A., Kaxiras, Efthimios, Zhang, Sulin, & Adri C. T. van Duin. Stress effects on the initial lithiation of crystalline silicon nanowires: Reactive molecular dynamics simulations using ReaxFF. United States. https://doi.org/10.1039/C4CP05198J
Ostadhossein, Alireza, Cubuk, Ekin D., Tritsaris, Georgios A., Kaxiras, Efthimios, Zhang, Sulin, and Adri C. T. van Duin. Thu . "Stress effects on the initial lithiation of crystalline silicon nanowires: Reactive molecular dynamics simulations using ReaxFF". United States. https://doi.org/10.1039/C4CP05198J. https://www.osti.gov/servlets/purl/1265270.
@article{osti_1265270,
title = {Stress effects on the initial lithiation of crystalline silicon nanowires: Reactive molecular dynamics simulations using ReaxFF},
author = {Ostadhossein, Alireza and Cubuk, Ekin D. and Tritsaris, Georgios A. and Kaxiras, Efthimios and Zhang, Sulin and Adri C. T. van Duin},
abstractNote = {Silicon (Si) has been recognized as a promising anode material for the next-generation high-capacity lithium (Li)-ion batteries because of its high theoretical energy density. Recent in situ transmission electron microscopy (TEM) revealed that the electrochemical lithiation of crystalline Si nanowires (c-SiNWs) proceeds by the migration of the interface between the lithiated Si (LixSi) shell and the pristine unlithiated core, accompanied by solid-state amorphization. The underlying atomic mechanisms of Li insertion into c-Si remain poorly understood. In this research, we perform molecular dynamics (MD) simulations using the reactive force field (ReaxFF) to characterize the lithiation process of c-SiNWs. Our calculations show that ReaxFF can accurately reproduce the energy barriers of Li migration from DFT calculations in both crystalline (c-Si) and amorphous Si (a-Si). The ReaxFF-based MD simulations reveal that Li insertion into interlayer spacing between two adjacent (111) planes results in the peeling-off of the (111) facets and subsequent amorphization, in agreement with experimental observations. We find that breaking of the Si–Si bonds between (111)-bilayers requires a rather high local Li concentration, which explains the atomically sharp amorphous–crystalline interface (ACI). Our stress analysis shows that lithiation induces compressive stress at the ACI layer, causing retardation or even the stagnation of the reaction front, also in good agreement with TEM observations. Lithiation at high temperatures (e.g. 1200 K) shows that Li insertion into c-SiNW results in an amorphous to crystalline phase transformation at Li : Si composition of ~4.2:1. In conclusion, our modeling results provide a comprehensive picture of the effects of reaction and diffusion-induced stress on the interfacial dynamics and mechanical degradation of SiNW anodes under chemo-mechanical lithiation.},
doi = {10.1039/C4CP05198J},
journal = {Physical Chemistry Chemical Physics. PCCP},
number = 5,
volume = 17,
place = {United States},
year = {Thu Dec 18 00:00:00 EST 2014},
month = {Thu Dec 18 00:00:00 EST 2014}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 81 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Kinetics of Initial Lithiation of Crystalline Silicon Electrodes of Lithium-Ion Batteries
journal, January 2012

  • Pharr, Matt; Zhao, Kejie; Wang, Xinwei
  • Nano Letters, Vol. 12, Issue 9
  • DOI: 10.1021/nl302841y

Thermo-Chemo-Mechanics of ASR Expansion in Concrete Structures
journal, March 2000


First Principles Simulations of the Electrochemical Lithiation and Delithiation of Faceted Crystalline Silicon
journal, August 2012

  • Chan, Maria K. Y.; Wolverton, C.; Greeley, Jeffrey P.
  • Journal of the American Chemical Society, Vol. 134, Issue 35
  • DOI: 10.1021/ja301766z

Lithiation induced corrosive fracture in defective carbon nanotubes
journal, October 2013

  • Huang, Xu; Yang, Hui; Liang, Wentao
  • Applied Physics Letters, Vol. 103, Issue 15
  • DOI: 10.1063/1.4824418

On the Nature and Behavior of Li Atoms in Si: A First Principles Study
journal, September 2010

  • Kim, Hyunwoo; Kweon, Kyoung Eun; Chou, Chia-Yun
  • The Journal of Physical Chemistry C, Vol. 114, Issue 41
  • DOI: 10.1021/jp104289x

High-performance lithium battery anodes using silicon nanowires
journal, December 2007

  • Chan, Candace K.; Peng, Hailin; Liu, Gao
  • Nature Nanotechnology, Vol. 3, Issue 1, p. 31-35
  • DOI: 10.1038/nnano.2007.411

In situ atomic-scale imaging of electrochemical lithiation in silicon
journal, October 2012

  • Liu, Xiao Hua; Wang, Jiang Wei; Huang, Shan
  • Nature Nanotechnology, Vol. 7, Issue 11
  • DOI: 10.1038/nnano.2012.170

Empirical chemical pseudopotential theory of molecular and metallic bonding
journal, May 1985


Analysis of stresses generated during hydrogen extraction from and injection into Ni(OH)2/NiOOH film electrode
journal, December 2000


ReaxFF Reactive Force Field for Molecular Dynamics Simulations of Hydrocarbon Oxidation
journal, February 2008

  • Chenoweth, Kimberly; van Duin, Adri C. T.; Goddard, William A.
  • The Journal of Physical Chemistry A, Vol. 112, Issue 5
  • DOI: 10.1021/jp709896w

Real-time stress measurements in lithium-ion battery negative-electrodes
journal, May 2012


Self-Limiting Oxidation in Small-Diameter Si Nanowires
journal, May 2012

  • Khalilov, U.; Pourtois, G.; Duin, A. C. T. van
  • Chemistry of Materials, Vol. 24, Issue 11
  • DOI: 10.1021/cm300707x

Structure and Properties of Li−Si Alloys: A First-Principles Study
journal, December 2010

  • Kim, Hyunwoo; Chou, Chia-Yun; Ekerdt, John G.
  • The Journal of Physical Chemistry C, Vol. 115, Issue 5
  • DOI: 10.1021/jp1083899

First Principles Model of Amorphous Silicon Lithiation
journal, January 2009

  • Chevrier, V. L.; Dahn, J. R.
  • Journal of The Electrochemical Society, Vol. 156, Issue 6
  • DOI: 10.1149/1.3111037

First-Principles Calculation of Stress
journal, February 1983


Bending-Induced Symmetry Breaking of Lithiation in Germanium Nanowires
journal, July 2014

  • Gu, Meng; Yang, Hui; Perea, Daniel E.
  • Nano Letters, Vol. 14, Issue 8
  • DOI: 10.1021/nl501680w

Chemical diffusion in intermediate phases in the lithium-silicon system
journal, May 1981


A chemo-mechanical model of lithiation in silicon
journal, October 2014


Orientation-Dependent Interfacial Mobility Governs the Anisotropic Swelling in Lithiated Silicon Nanowires
journal, January 2012

  • Yang, Hui; Huang, Shan; Huang, Xu
  • Nano Letters, Vol. 12, Issue 4
  • DOI: 10.1021/nl204437t

Diffusion of Lithium in Bulk Amorphous Silicon: A Theoretical Study
journal, October 2012

  • Tritsaris, Georgios A.; Zhao, Kejie; Okeke, Onyekwelu U.
  • The Journal of Physical Chemistry C, Vol. 116, Issue 42
  • DOI: 10.1021/jp307221q

Thermodynamic Properties of the Lithium-Silicon System
journal, January 1976

  • Sharma, Ram A.; Seefurth, Randall N.
  • Journal of The Electrochemical Society, Vol. 123, Issue 12, p. 1763-1768
  • DOI: 10.1149/1.2132692

Investigation of Stresses Generated during Lithium Transport through the RF Sputter-Deposited Li[sub 1−δ]CoO[sub 2] Film by a DQCR Technique
journal, January 2003

  • Go, Joo-Young; Pyun, Su-Il
  • Journal of The Electrochemical Society, Vol. 150, Issue 8
  • DOI: 10.1149/1.1584438

Real-Time Measurement of Stress and Damage Evolution during Initial Lithiation of Crystalline Silicon
journal, July 2011


Morphological Evolution of Si Nanowires upon Lithiation: A First-Principles Multiscale Model
journal, April 2013

  • Cubuk, Ekin D.; Wang, Wei L.; Zhao, Kejie
  • Nano Letters, Vol. 13, Issue 5
  • DOI: 10.1021/nl400132q

Theory of Structural Transformation in Lithiated Amorphous Silicon
journal, June 2014

  • Cubuk, Ekin D.; Kaxiras, Efthimios
  • Nano Letters, Vol. 14, Issue 7
  • DOI: 10.1021/nl5015525

Reactive Potentials for Advanced Atomistic Simulations
journal, July 2013


Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells
journal, January 2007


Studying the Kinetics of Crystalline Silicon Nanoparticle Lithiation with In Situ Transmission Electron Microscopy
journal, September 2012

  • McDowell, Matthew T.; Ryu, Ill; Lee, Seok Woo
  • Advanced Materials, Vol. 24, Issue 45
  • DOI: 10.1002/adma.201202744

Anisotropic Swelling and Fracture of Silicon Nanowires during Lithiation
journal, August 2011

  • Liu, Xiao Hua; Zheng, He; Zhong, Li
  • Nano Letters, Vol. 11, Issue 8, p. 3312-3318
  • DOI: 10.1021/nl201684d

All-Solid Lithium Electrodes with Mixed-Conductor Matrix
journal, January 1981

  • Boukamp, B. A.
  • Journal of The Electrochemical Society, Vol. 128, Issue 4
  • DOI: 10.1149/1.2127495

Concurrent Reaction and Plasticity during Initial Lithiation of Crystalline Silicon in Lithium-Ion Batteries
journal, January 2012

  • Zhao, Kejie; Pharr, Matt; Wan, Qiang
  • Journal of The Electrochemical Society, Vol. 159, Issue 3
  • DOI: 10.1149/2.020203jes

Colossal Reversible Volume Changes in Lithium Alloys
journal, January 2001

  • Beaulieu, L. Y.; Eberman, K. W.; Turner, R. L.
  • Electrochemical and Solid-State Letters, Vol. 4, Issue 9
  • DOI: 10.1149/1.1388178

The phase diagram of the system lithium-silicon
journal, June 1985


Self-Limiting Lithiation in Silicon Nanowires
journal, January 2013

  • Liu, Xiao Hua; Fan, Feifei; Yang, Hui
  • ACS Nano, Vol. 7, Issue 2
  • DOI: 10.1021/nn305282d

A High Capacity Nano-Si Composite Anode Material for Lithium Rechargeable Batteries
journal, January 1999

  • Li, Hong; Huang, Xuejie; Chen, Liquan
  • Electrochemical and Solid-State Letters, Vol. 2, Issue 11, p. 547-549
  • DOI: 10.1149/1.1390899

Reactive Flow in Silicon Electrodes Assisted by the Insertion of Lithium
journal, July 2012

  • Zhao, Kejie; Tritsaris, Georgios A.; Pharr, Matt
  • Nano Letters, Vol. 12, Issue 8
  • DOI: 10.1021/nl302261w

Computation of ring statistics for network models of solids
journal, September 1991


The Mixing Mechanism during Lithiation of Si Negative Electrode in Li-Ion Batteries: An Ab Initio Molecular Dynamics Study
journal, December 2011

  • Johari, Priya; Qi, Yue; Shenoy, Vivek B.
  • Nano Letters, Vol. 11, Issue 12
  • DOI: 10.1021/nl203302d

Stresses of a Titanium Thin-Film Electrode Generated during Anodic Oxidation by a Beam-Bending Method
journal, January 2000

  • Ueno, K.; Pyun, S. -I.; Seo, M.
  • Journal of The Electrochemical Society, Vol. 147, Issue 12
  • DOI: 10.1149/1.1394095

Mechanical properties of amorphous Li x Si alloys: a reactive force field study
journal, October 2013

  • Fan, Feifei; Huang, Shan; Yang, Hui
  • Modelling and Simulation in Materials Science and Engineering, Vol. 21, Issue 7
  • DOI: 10.1088/0965-0393/21/7/074002

Deformations in Si−Li Anodes Upon Electrochemical Alloying in Nano-Confined Space
journal, June 2010

  • Hertzberg, Benjamin; Alexeev, Alexander; Yushin, Gleb
  • Journal of the American Chemical Society, Vol. 132, Issue 25, p. 8548-8549
  • DOI: 10.1021/ja1031997

ReaxFF:  A Reactive Force Field for Hydrocarbons
journal, October 2001

  • van Duin, Adri C. T.; Dasgupta, Siddharth; Lorant, Francois
  • The Journal of Physical Chemistry A, Vol. 105, Issue 41
  • DOI: 10.1021/jp004368u

Insights into Degradation of Si Anodes from First-Principle Calculations
journal, September 2013

  • Rohrer, Jochen; Albe, Karsten
  • The Journal of Physical Chemistry C, Vol. 117, Issue 37
  • DOI: 10.1021/jp401379d

Size-Dependent Fracture of Silicon Nanoparticles During Lithiation
journal, January 2012

  • Liu, Xiao Hua; Zhong, Li; Huang, Shan
  • ACS Nano, Vol. 6, Issue 2
  • DOI: 10.1021/nn204476h

Pair Distribution Function Analysis and Solid State NMR Studies of Silicon Electrodes for Lithium Ion Batteries: Understanding the (De)lithiation Mechanisms
journal, January 2011

  • Key, Baris; Morcrette, Mathieu; Tarascon, Jean-Marie
  • Journal of the American Chemical Society, Vol. 133, Issue 3
  • DOI: 10.1021/ja108085d

Small-Diameter Silicon Nanowire Surfaces
journal, February 2003


Self-weakening in lithiated graphene electrodes
journal, March 2013


Anisotropic Volume Expansion of Crystalline Silicon during Electrochemical Lithium Insertion: An Atomic Level Rationale
journal, September 2012

  • Jung, Sung Chul; Choi, Jang Wook; Han, Young-Kyu
  • Nano Letters, Vol. 12, Issue 10
  • DOI: 10.1021/nl3027197

Fracture of crystalline silicon nanopillars during electrochemical lithium insertion
journal, February 2012

  • Lee, S. W.; McDowell, M. T.; Berla, L. A.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 11
  • DOI: 10.1073/pnas.1201088109

Roles of nanosize in lithium reactive nanomaterials for lithium ion batteries
journal, February 2011


Tough Germanium Nanoparticles under Electrochemical Cycling
journal, March 2013

  • Liang, Wentao; Yang, Hui; Fan, Feifei
  • ACS Nano, Vol. 7, Issue 4
  • DOI: 10.1021/nn400330h

Lithium-Assisted Plastic Deformation of Silicon Electrodes in Lithium-Ion Batteries: A First-Principles Theoretical Study
journal, July 2011

  • Zhao, Kejie; Wang, Wei L.; Gregoire, John
  • Nano Letters, Vol. 11, Issue 7
  • DOI: 10.1021/nl201501s

In situ measurements of stress evolution in silicon thin films during electrochemical lithiation and delithiation
journal, August 2010


Silicon-Based Negative Electrode for High-Capacity Lithium-Ion Batteries: “SiO”-Carbon Composite
journal, January 2011

  • Yamada, Masayuki; Ueda, Atsushi; Matsumoto, Kazunobu
  • Journal of The Electrochemical Society, Vol. 158, Issue 4
  • DOI: 10.1149/1.3551539

Anomalous Shape Changes of Silicon Nanopillars by Electrochemical Lithiation
journal, July 2011

  • Lee, Seok Woo; McDowell, Matthew T.; Choi, Jang Wook
  • Nano Letters, Vol. 11, Issue 7
  • DOI: 10.1021/nl201787r

Crystalline-Amorphous Core−Shell Silicon Nanowires for High Capacity and High Current Battery Electrodes
journal, January 2009

  • Cui, Li-Feng; Ruffo, Riccardo; Chan, Candace K.
  • Nano Letters, Vol. 9, Issue 1, p. 491-495
  • DOI: 10.1021/nl8036323

Works referencing / citing this record:

Failure modes and mechanisms for rechargeable Lithium-based batteries: a state-of-the-art review
journal, November 2018


Mechanical response of all-MoS 2 single-layer heterostructures: a ReaxFF investigation
journal, January 2016

  • Mortazavi, Bohayra; Ostadhossein, Alireza; Rabczuk, Timon
  • Physical Chemistry Chemical Physics, Vol. 18, Issue 34
  • DOI: 10.1039/c6cp03612k

Rare event simulations reveal subtle key steps in aqueous silicate condensation
journal, January 2017

  • Moqadam, Mahmoud; Riccardi, Enrico; Trinh, Thuat T.
  • Physical Chemistry Chemical Physics, Vol. 19, Issue 20
  • DOI: 10.1039/c7cp01268c

Two-dimensional porous silicon nanosheets as anode materials for high performance lithium-ion batteries
journal, January 2019

  • Tang, Jingjing; Yin, Qifang; Wang, Qian
  • Nanoscale, Vol. 11, Issue 22
  • DOI: 10.1039/c9nr01440c

New insights into Li diffusion in Li–Si alloys for Si anode materials: role of Si microstructures
journal, January 2019


Estimating Arrhenius parameters using temperature programmed molecular dynamics
journal, July 2016

  • Imandi, Venkataramana; Chatterjee, Abhijit
  • The Journal of Chemical Physics, Vol. 145, Issue 3
  • DOI: 10.1063/1.4958834

Constructing first-principles phase diagrams of amorphous Li x Si using machine-learning-assisted sampling with an evolutionary algorithm
journal, June 2018

  • Artrith, Nongnuch; Urban, Alexander; Ceder, Gerbrand
  • The Journal of Chemical Physics, Vol. 148, Issue 24
  • DOI: 10.1063/1.5017661

A simple local expression for the prefactor in transition state theory
journal, April 2019

  • Kadkhodaei, S.; van de Walle, A.
  • The Journal of Chemical Physics, Vol. 150, Issue 14
  • DOI: 10.1063/1.5086746

Energy landscape and diffusion kinetics of lithiated silicon: A kinetic activation-relaxation technique study
journal, October 2017


Structural Damage of Few-Layer Silicene in Vertical and Parallel Lithiations
journal, January 2019

  • Yao, Mingze; Ai, Liqiang; Zhou, Yusi
  • Journal of The Electrochemical Society, Vol. 166, Issue 14
  • DOI: 10.1149/2.1051914jes

A simple local expression for the prefactor in transition state theory
text, January 2018