skip to main content


Title: Bismuth chalcohalides and oxyhalides as optoelectronic materials

Several Tl and Pb based halides and chalcohalides have recently been discovered as promising optoelectronic materials [i.e., photovoltaic (PV) and gamma-ray detection materials]. Efficient carrier transport in these materials is attributed partly to the special chemistry of ns2 ions (e.g., Tl+, Pb2+, and Bi3+). However, the toxicity of Tl and Pb is challenging to the development and the wide use of Tl and Pb based materials. In this paper, we investigate materials that contain Bi3+, which is also an ns2 ion. By combining Bi halides with Bi chalcogenides or oxides, the resulting ternary compounds exhibit a wide range of band gaps, offering opportunities in various optoelectronic applications. Density functional calculations of electronic structure, dielectric properties, optical properties, and defect properties are performed on selected Bi3+ based chalcohalides and oxyhalides, i.e., BiSeBr, BiSI, BiSeI, and BiOBr. We propose different applications for these Bi compounds based on calculated properties, i.e., n-BiSeBr, p-BiSI, and p-BiSeI as PV materials, BiSeBr and BiSI as room-temperature radiation detection materials, and BiOBr as a p-type transparent conducting material. BiSeBr, BiSI, and BiSeBr have chain structures while BiOBr has a layered structure. However, in BiSI, BiSeI, and BiOBr, significant valence-band dispersion is found in the directions perpendicular tomore » the atomic chain or layer because the valence-band edge states are dominated by the halogen states that have strong interchain or interlayer coupling. We find significantly enhanced Born effective charges and anomalously large static dielectric constants of the Bi compounds, which should reduce carrier scattering and trapping and promote efficient carrier transport in these materials. The strong screening and the small anion coordination numbers in Bi chalcohalides should lead to weak potentials for electron localization at anion vacancies. As a result, defect calculations indeed show that the anion vacancies (Se and Br vacancies) in BiSeBr are shallow, which is beneficial to efficient electron transport.« less
 [1] ;  [2] ;  [1]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  2. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Beihang Univ., Beijing (China)
Publication Date:
Grant/Contract Number:
Accepted Manuscript
Journal Name:
Physical Review B
Additional Journal Information:
Journal Volume: 93; Journal Issue: 10; Journal ID: ISSN 2469-9950
American Physical Society (APS)
Research Org:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org:
Country of Publication:
United States
OSTI Identifier:
Alternate Identifier(s):
OSTI ID: 1244307