skip to main content


Title: Osborne Reynolds pipe flow: Direct simulation from laminar through gradual transition to fully developed turbulence

We report that the precise dynamics of breakdown in pipe transition is a century-old unresolved problem in fluid mechanics. We demonstrate that the abruptness and mysteriousness attributed to the Osborne Reynolds pipe transition can be partially resolved with a spatially developing direct simulation that carries weakly but finitely perturbed laminar inflow through gradual rather than abrupt transition arriving at the fully developed turbulent state. Our results with this approach show during transition the energy norms of such inlet perturbations grow exponentially rather than algebraically with axial distance. When inlet disturbance is located in the core region, helical vortex filaments evolve into large-scale reverse hairpin vortices. The interaction of these reverse hairpins among themselves or with the near-wall flow when they descend to the surface from the core produces small-scale hairpin packets, which leads to breakdown. When inlet disturbance is near the wall, certain quasi-spanwise structure is stretched into a Lambda vortex, and develops into a large-scale hairpin vortex. Small-scale hairpin packets emerge near the tip region of the large-scale hairpin vortex, and subsequently grow into a turbulent spot, which is itself a local concentration of small-scale hairpin vortices. This vortex dynamics is broadly analogous to that in the boundary layermore » bypass transition and in the secondary instability and breakdown stage of natural transition, suggesting the possibility of a partial unification. Under parabolic base flow the friction factor overshoots Moody’s correlation. Plug base flow requires stronger inlet disturbance for transition. Finally, accuracy of the results is demonstrated by comparing with analytical solutions before breakdown, and with fully developed turbulence measurements after the completion of transition.« less
 [1] ;  [2] ;  [3] ;  [4]
  1. Royal Military College of Canada, Kingston, ON (Canada)
  2. Stanford Univ., CA (United States)
  3. Arizona State Univ., Tempe, AZ (United States)
  4. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Publication Date:
Accepted Manuscript
Journal Name:
Proceedings of the National Academy of Sciences of the United States of America
Additional Journal Information:
Journal Volume: 112; Journal Issue: 26; Journal ID: ISSN 0027-8424
National Academy of Sciences, Washington, DC (United States)
Research Org:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org:
USDOE; US Air Force Office of Scientific Research (AFOSR); Natural Science and Engineering Research Council of Canada
Country of Publication:
United States
42 ENGINEERING; pipe flow; transition; turbulence; direct numerical simulation; spatially evolving
OSTI Identifier: