skip to main content

DOE PAGESDOE PAGES

Title: Spatially Explicit Life Cycle Analysis of Cellulosic Ethanol Production Scenarios in Southwestern Michigan

By modeling the life cycle of fuel pathways for cellulosic ethanol (CE) it can help identify logistical barriers and anticipated impacts for the emerging commercial CE industry. Such models contain high amounts of variability, primarily due to the varying nature of agricultural production but also because of limitations in the availability of data at the local scale, resulting in the typical practice of using average values. In this study, 12 spatially explicit, cradle-to-refinery gate CE pathways were developed that vary by feedstock (corn stover, switchgrass, and Miscanthus), nitrogen application rate (higher, lower), pretreatment method (ammonia fiber expansion [AFEX], dilute acid), and co-product treatment method (mass allocation, sub-division), in which feedstock production was modeled at the watershed scale over a nine-county area in Southwestern Michigan. When comparing feedstocks, the model showed that corn stover yielded higher global warming potential (GWP), acidification potential (AP), and eutrophication potential (EP) than the perennial feedstocks of switchgrass and Miscanthus, on an average per area basis. Full life cycle results per MJ of produced ethanol demonstrated more mixed results, with corn stover-derived CE scenarios that use sub-division as a co-product treatment method yielding similarly favorable outcomes as switchgrass- and Miscanthus-derived CE scenarios. Variability was found tomore » be greater between feedstocks than watersheds. Additionally, scenarios using dilute acid pretreatment had more favorable results than those using AFEX pretreatment.« less
Authors:
 [1] ;  [2] ;  [3] ;  [3] ;  [4] ;  [5]
  1. Univ. of Wisconsin, Madison, WI (United States). Great Lakes Bioenergy Research Center
  2. Univ. of Wisconsin, Madison, WI (United States). Great Lakes Bioenergy Research Center and Biological Systems Engineering Dept.
  3. Univ. of Maryland, College Park, MD (United States). Great Lakes Bioenergy Research Center and Joint Global Change Research Inst. of Pacific Northwest National Lab.
  4. Univ. of Wisconsin, Madison, WI (United States). Biological Systems Engineering Dept.
  5. WSP USA, New York City, NY (United States)
Publication Date:
Grant/Contract Number:
FC02-07ER64494; AC05-76RL01830
Type:
Published Article
Journal Name:
BioEnergy Research
Additional Journal Information:
Journal Volume: 10; Journal Issue: 1; Journal ID: ISSN 1939-1234
Publisher:
Springer
Research Org:
Univ. of Wisconsin, Madison, WI (United States)
Sponsoring Org:
USDOE Office of Science (SC), Biological and Environmental Research (BER) (SC-23); USDOE Office of Energy Efficiency and Renewable Energy (EERE)
Country of Publication:
United States
Language:
English
Subject:
09 BIOMASS FUELS; 54 ENVIRONMENTAL SCIENCES; Life cycle analysis; Energy crops; Spatially explicit; Eutrophication potential; Globalwarming potential; Bioenergy
OSTI Identifier:
1262096
Alternate Identifier(s):
OSTI ID: 1427712