skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Tuning the Redox Properties of a Nonheme Iron(III)-Peroxo Complex Binding Redox-Inactive Zinc Ions by Water Molecules

Abstract

Here we report redox-inactive metal ions play important roles in tuning chemical properties of metal–oxygen intermediates. We describe the effect of water molecules on the redox properties of a nonheme iron(III)–peroxo complex binding redox-inactive metal ions. The coordination of two water molecules to a Zn2+ ion in (TMC)FeIII-(O2)-Zn(CF3SO3)2 (1-Zn2+) decreases the Lewis acidity of the Zn2+ ion, resulting in the decrease of the one-electron oxidation and reduction potentials of 1-Zn2+. This further changes the reactivities of 1-Zn2+ in oxidation and reduction reactions; no reaction occurred upon addition of an oxidant (e.g., cerium(IV) ammonium nitrate (CAN)) to 1-Zn2+, whereas 1-Zn2+ coordinating two water molecules, (TMC)FeIII-(O2)-Zn(CF3SO3)2-(OH2)2 [1-Zn2+-(OH2)2], releases the O2 unit in the oxidation reaction. In the reduction reactions, 1-Zn2+ was converted to its corresponding iron(IV)–oxo species upon addition of a reductant (e.g., a ferrocene derivative), whereas such a reaction occurred at a much slower rate in the case of 1-Zn2+-(OH2)2. Finally, the present results provide the first biomimetic example showing that water molecules at the active sites of metalloenzymes may participate in tuning the redox properties of metal–oxygen intermediates.

Authors:
 [1];  [1];  [2];  [1];  [1];  [1];  [3];  [4];  [1]
  1. Ewha Womans Univ., Seoul (Korea)
  2. Osaka Univ., Suita (Japan); Japan Science and Technology Agency (JST), Suita (Japan). Advanced Low Carbon Technology Research and Development Program (ALCA)
  3. SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Synchrotron Radiation Lightsource (SSRL)
  4. Osaka Univ., Suita (Japan); Japan Science and Technology Agency (JST), Suita (Japan). Advanced Low Carbon Technology Research and Development Program (ALCA); Meijo Univ., Nagoya (Japan); Japan Science and Technology Agency (JST), Nagoya (Japan) Advanced Low Carbon Technology Research and Development Program (ALCA) and SENTAN
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Org.:
USDOE; National Research Foundation of Korea (NRF); Japan Society for the Promotion of Science (JSPS)
OSTI Identifier:
1261105
Grant/Contract Number:  
AC02-76SF0051; NRF-2012R1A3A2048842; NRF-2010-00353; 2013R1A1A2062737
Resource Type:
Accepted Manuscript
Journal Name:
Chemistry - A European Journal
Additional Journal Information:
Journal Volume: 21; Journal Issue: 30; Journal ID: ISSN 0947-6539
Publisher:
ChemPubSoc Europe
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; bioinorganic chemistry; metal–oxygen intermediates; oxygen-evolving complexes; redox reactions; water oxidation

Citation Formats

Lee, Yong-Min, Bang, Suhee, Yoon, Heejung, Bae, Seong Hee, Hong, Seungwoo, Cho, Kyung-Bin, Sarangi, Ritimukta, Fukuzumi, Shunichi, and Nam, Wonwoo. Tuning the Redox Properties of a Nonheme Iron(III)-Peroxo Complex Binding Redox-Inactive Zinc Ions by Water Molecules. United States: N. p., 2015. Web. doi:10.1002/chem.201502143.
Lee, Yong-Min, Bang, Suhee, Yoon, Heejung, Bae, Seong Hee, Hong, Seungwoo, Cho, Kyung-Bin, Sarangi, Ritimukta, Fukuzumi, Shunichi, & Nam, Wonwoo. Tuning the Redox Properties of a Nonheme Iron(III)-Peroxo Complex Binding Redox-Inactive Zinc Ions by Water Molecules. United States. doi:10.1002/chem.201502143.
Lee, Yong-Min, Bang, Suhee, Yoon, Heejung, Bae, Seong Hee, Hong, Seungwoo, Cho, Kyung-Bin, Sarangi, Ritimukta, Fukuzumi, Shunichi, and Nam, Wonwoo. Fri . "Tuning the Redox Properties of a Nonheme Iron(III)-Peroxo Complex Binding Redox-Inactive Zinc Ions by Water Molecules". United States. doi:10.1002/chem.201502143. https://www.osti.gov/servlets/purl/1261105.
@article{osti_1261105,
title = {Tuning the Redox Properties of a Nonheme Iron(III)-Peroxo Complex Binding Redox-Inactive Zinc Ions by Water Molecules},
author = {Lee, Yong-Min and Bang, Suhee and Yoon, Heejung and Bae, Seong Hee and Hong, Seungwoo and Cho, Kyung-Bin and Sarangi, Ritimukta and Fukuzumi, Shunichi and Nam, Wonwoo},
abstractNote = {Here we report redox-inactive metal ions play important roles in tuning chemical properties of metal–oxygen intermediates. We describe the effect of water molecules on the redox properties of a nonheme iron(III)–peroxo complex binding redox-inactive metal ions. The coordination of two water molecules to a Zn2+ ion in (TMC)FeIII-(O2)-Zn(CF3SO3)2 (1-Zn2+) decreases the Lewis acidity of the Zn2+ ion, resulting in the decrease of the one-electron oxidation and reduction potentials of 1-Zn2+. This further changes the reactivities of 1-Zn2+ in oxidation and reduction reactions; no reaction occurred upon addition of an oxidant (e.g., cerium(IV) ammonium nitrate (CAN)) to 1-Zn2+, whereas 1-Zn2+ coordinating two water molecules, (TMC)FeIII-(O2)-Zn(CF3SO3)2-(OH2)2 [1-Zn2+-(OH2)2], releases the O2 unit in the oxidation reaction. In the reduction reactions, 1-Zn2+ was converted to its corresponding iron(IV)–oxo species upon addition of a reductant (e.g., a ferrocene derivative), whereas such a reaction occurred at a much slower rate in the case of 1-Zn2+-(OH2)2. Finally, the present results provide the first biomimetic example showing that water molecules at the active sites of metalloenzymes may participate in tuning the redox properties of metal–oxygen intermediates.},
doi = {10.1002/chem.201502143},
journal = {Chemistry - A European Journal},
number = 30,
volume = 21,
place = {United States},
year = {2015},
month = {6}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 1 work
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

The Artificial Leaf
journal, January 2012

  • Nocera, Daniel G.
  • Accounts of Chemical Research, Vol. 45, Issue 5
  • DOI: 10.1021/ar2003013

Oxomanganese complexes for natural and artificial photosynthesis
journal, April 2012

  • Rivalta, Ivan; Brudvig, Gary W.; Batista, Victor S.
  • Current Opinion in Chemical Biology, Vol. 16, Issue 1-2
  • DOI: 10.1016/j.cbpa.2012.03.003

Structures and Energetics for O 2 Formation in Photosystem II
journal, December 2009

  • Siegbahn, Per E. M.
  • Accounts of Chemical Research, Vol. 42, Issue 12
  • DOI: 10.1021/ar900117k

Biological Water Oxidation
journal, March 2013

  • Cox, Nicholas; Pantazis, Dimitrios A.; Neese, Frank
  • Accounts of Chemical Research, Vol. 46, Issue 7
  • DOI: 10.1021/ar3003249

Calcium in the oxygen-evolving complex: Structural and mechanistic role determined by X-ray spectroscopy
journal, July 2011


Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å
journal, April 2011

  • Umena, Yasufumi; Kawakami, Keisuke; Shen, Jian-Ren
  • Nature, Vol. 473, Issue 7345
  • DOI: 10.1038/nature09913

Native structure of photosystem II at 1.95 Å resolution viewed by femtosecond X-ray pulses
journal, November 2014

  • Suga, Michihiro; Akita, Fusamichi; Hirata, Kunio
  • Nature, Vol. 517, Issue 7532
  • DOI: 10.1038/nature13991

The calcium and chloride requirements of the O2 evolving complex
journal, February 2008


Reflections on small molecule manganese models that seek to mimic photosynthetic water oxidation chemistry
journal, February 2008


Water-Splitting Chemistry of Photosystem II
journal, November 2006

  • McEvoy, James P.; Brudvig, Gary W.
  • Chemical Reviews, Vol. 106, Issue 11
  • DOI: 10.1021/cr0204294

Quantifying the Ion Selectivity of the Ca 2+ Site in Photosystem II:  Evidence for Direct Involvement of Ca 2+ in O 2 Formation
journal, July 2001

  • Vrettos, John S.; Stone, Daniel A.; Brudvig, Gary W.
  • Biochemistry, Vol. 40, Issue 26
  • DOI: 10.1021/bi010679z

A Synthetic Model of the Mn3Ca Subsite of the Oxygen-Evolving Complex in Photosystem II
journal, August 2011


Redox-inactive metals modulate the reduction potential in heterometallic manganese–oxido clusters
journal, March 2013

  • Tsui, Emily Y.; Tran, Rosalie; Yano, Junko
  • Nature Chemistry, Vol. 5, Issue 4
  • DOI: 10.1038/nchem.1578

Reduction potentials of heterometallic manganese-oxido cubane complexes modulated by redox-inactive metals
journal, June 2013

  • Tsui, E. Y.; Agapie, T.
  • Proceedings of the National Academy of Sciences, Vol. 110, Issue 25
  • DOI: 10.1073/pnas.1302677110

Synthetic Cluster Models of Biological and Heterogeneous Manganese Catalysts for O 2 Evolution
journal, December 2013

  • Tsui, Emily Y.; Kanady, Jacob S.; Agapie, Theodor
  • Inorganic Chemistry, Vol. 52, Issue 24
  • DOI: 10.1021/ic402236f

Mn 4 Ca Cluster in Photosynthesis: Where and How Water is Oxidized to Dioxygen
journal, March 2014

  • Yano, Junko; Yachandra, Vittal
  • Chemical Reviews, Vol. 114, Issue 8
  • DOI: 10.1021/cr4004874

Protein Crystallography Using Free-Electron Lasers: Water Oxidation in Photosynthesis
journal, October 2014

  • Ogata, Hideaki; Lubitz, Wolfgang
  • Angewandte Chemie International Edition, Vol. 53, Issue 48
  • DOI: 10.1002/anie.201408672

Proteinkristallographie mit Freie-Elektronen-Lasern: Wasseroxidation in der Photosynthese
journal, October 2014


Tuning Reactivity and Mechanism in Oxidation Reactions by Mononuclear Nonheme Iron(IV)-Oxo Complexes
journal, February 2014

  • Nam, Wonwoo; Lee, Yong-Min; Fukuzumi, Shunichi
  • Accounts of Chemical Research, Vol. 47, Issue 4
  • DOI: 10.1021/ar400258p

Crystal structure of a metal ion-bound oxoiron(IV) complex and implications for biological electron transfer
journal, July 2010

  • Fukuzumi, Shunichi; Morimoto, Yuma; Kotani, Hiroaki
  • Nature Chemistry, Vol. 2, Issue 9
  • DOI: 10.1038/nchem.731

Metal Ion-Coupled Electron Transfer of a Nonheme Oxoiron(IV) Complex: Remarkable Enhancement of Electron-Transfer Rates by Sc 3+
journal, January 2011

  • Morimoto, Yuma; Kotani, Hiroaki; Park, Jiyun
  • Journal of the American Chemical Society, Vol. 133, Issue 3
  • DOI: 10.1021/ja109056x

Proton-Promoted Oxygen Atom Transfer vs Proton-Coupled Electron Transfer of a Non-Heme Iron(IV)-Oxo Complex
journal, February 2012

  • Park, Jiyun; Morimoto, Yuma; Lee, Yong-Min
  • Journal of the American Chemical Society, Vol. 134, Issue 8
  • DOI: 10.1021/ja211641s

A Mononuclear Non-Heme Manganese(IV)–Oxo Complex Binding Redox-Inactive Metal Ions
journal, January 2013

  • Chen, Junying; Lee, Yong-Min; Davis, Katherine M.
  • Journal of the American Chemical Society, Vol. 135, Issue 17
  • DOI: 10.1021/ja312113p

Enhanced Electron-Transfer Reactivity of Nonheme Manganese(IV)–Oxo Complexes by Binding Scandium Ions
journal, June 2013

  • Yoon, Heejung; Lee, Yong-Min; Wu, Xiujuan
  • Journal of the American Chemical Society, Vol. 135, Issue 24
  • DOI: 10.1021/ja403965h

Spectroscopic Capture and Reactivity of a Low-Spin Cobalt(IV)-Oxo Complex Stabilized by Binding Redox-Inactive Metal Ions
journal, July 2014

  • Hong, Seungwoo; Pfaff, Florian F.; Kwon, Eunji
  • Angewandte Chemie International Edition, Vol. 53, Issue 39
  • DOI: 10.1002/anie.201405874

Spectroscopic Capture and Reactivity of a Low-Spin Cobalt(IV)-Oxo Complex Stabilized by Binding Redox-Inactive Metal Ions
journal, July 2014

  • Hong, Seungwoo; Pfaff, Florian F.; Kwon, Eunji
  • Angewandte Chemie, Vol. 126, Issue 39
  • DOI: 10.1002/ange.201405874

An Oxocobalt(IV) Complex Stabilized by Lewis Acid Interactions with Scandium(III) Ions
journal, December 2010

  • Pfaff, Florian Felix; Kundu, Subrata; Risch, Marcel
  • Angewandte Chemie International Edition, Vol. 50, Issue 7
  • DOI: 10.1002/anie.201005869

Ein Cobalt(IV)-Oxido-Komplex: Stabilisierung durch Lewis-Säure-Wechselwirkung mit Sc3+
journal, December 2010

  • Pfaff, Florian F.; Kundu, Subrata; Risch, Marcel
  • Angewandte Chemie, Vol. 123, Issue 7
  • DOI: 10.1002/ange.201005869

Valence Tautomerism in a High-Valent Manganese–Oxo Porphyrinoid Complex Induced by a Lewis Acid
journal, June 2012

  • Leeladee, Pannee; Baglia, Regina A.; Prokop, Katharine A.
  • Journal of the American Chemical Society, Vol. 134, Issue 25
  • DOI: 10.1021/ja304609n

Efficient Catalytic Oxidation of Alkanes by Lewis Acid/[Os VI (N)Cl 4 ] Using Peroxides as Terminal Oxidants. Evidence for a Metal-Based Active Intermediate
journal, August 2008

  • Yiu, Shek-Man; Man, Wai-Lun; Lau, Tai-Chu
  • Journal of the American Chemical Society, Vol. 130, Issue 32
  • DOI: 10.1021/ja802625e

FeCl 3 -Activated Oxidation of Alkanes by [Os(N)O 3 ] -
journal, November 2004

  • Yiu, Shek-Man; Wu, Zhi-Biao; Mak, Chi-Keung
  • Journal of the American Chemical Society, Vol. 126, Issue 45
  • DOI: 10.1021/ja0487832

A Method for Driving O-Atom Transfer:  Secondary Ion Binding to a Tetraamide Macrocyclic Ligand
journal, November 1998

  • Miller, Christine G.; Gordon-Wylie, Scott W.; Horwitz, Colin P.
  • Journal of the American Chemical Society, Vol. 120, Issue 44
  • DOI: 10.1021/ja972922g

The Effects of Redox-Inactive Metal Ions on the Activation of Dioxygen: Isolation and Characterization of a Heterobimetallic Complex Containing a Mn III –(μ-OH)–Ca II Core
journal, June 2011

  • Park, Young Jun; Ziller, Joseph W.; Borovik, A. S.
  • Journal of the American Chemical Society, Vol. 133, Issue 24
  • DOI: 10.1021/ja203458d

Heterobimetallic complexes with M III -(μ-OH)-M II cores (M III = Fe, Mn, Ga; M II = Ca, Sr, and Ba): structural, kinetic, and redox properties
journal, January 2013

  • Park, Young Jun; Cook, Sarah A.; Sickerman, Nathaniel S.
  • Chem. Sci., Vol. 4, Issue 2
  • DOI: 10.1039/C2SC21400H

Structure and reactivity of a mononuclear non-haem iron(III)–peroxo complex
journal, October 2011

  • Cho, Jaeheung; Jeon, Sujin; Wilson, Samuel A.
  • Nature, Vol. 478, Issue 7370
  • DOI: 10.1038/nature10535

A mononuclear nonheme iron(iii)–peroxo complex binding redox-inactive metal ions
journal, January 2013

  • Lee, Yong-Min; Bang, Suhee; Kim, Yun Mi
  • Chemical Science, Vol. 4, Issue 10
  • DOI: 10.1039/c3sc51864g

Redox-inactive metal ions modulate the reactivity and oxygen release of mononuclear non-haem iron(III)–peroxo complexes
journal, September 2014

  • Bang, Suhee; Lee, Yong-Min; Hong, Seungwoo
  • Nature Chemistry, Vol. 6, Issue 10
  • DOI: 10.1038/nchem.2055

Sc 3+ -Triggered Oxoiron(IV) Formation from O 2 and its Non-Heme Iron(II) Precursor via a Sc 3+ –Peroxo–Fe 3+ Intermediate
journal, May 2013

  • Li, Feifei; Van Heuvelen, Katherine M.; Meier, Katlyn K.
  • Journal of the American Chemical Society, Vol. 135, Issue 28
  • DOI: 10.1021/ja402645y

Brønsted Acid-Promoted C–H Bond Cleavage via Electron Transfer from Toluene Derivatives to a Protonated Nonheme Iron(IV)-Oxo Complex with No Kinetic Isotope Effect
journal, March 2013

  • Park, Jiyun; Lee, Yong-Min; Nam, Wonwoo
  • Journal of the American Chemical Society, Vol. 135, Issue 13
  • DOI: 10.1021/ja311662w

Fluorescence Maxima of 10-Methylacridone−Metal Ion Salt Complexes:  A Convenient and Quantitative Measure of Lewis Acidity of Metal Ion Salts
journal, September 2002

  • Fukuzumi, Shunichi; Ohkubo, Kei
  • Journal of the American Chemical Society, Vol. 124, Issue 35
  • DOI: 10.1021/ja026613o

Metal ion-coupled and decoupled electron transfer
journal, February 2010


Demonstration of the Heterolytic OO Bond Cleavage of Putative Nonheme Iron(II)OOH(R) Complexes for Fenton and Enzymatic Reactions
journal, June 2014

  • Bang, Suhee; Park, Sora; Lee, Yong-Min
  • Angewandte Chemie International Edition, Vol. 53, Issue 30
  • DOI: 10.1002/anie.201404556

Demonstration of the Heterolytic OO Bond Cleavage of Putative Nonheme Iron(II)OOH(R) Complexes for Fenton and Enzymatic Reactions
journal, June 2014


    Works referencing / citing this record:

    Heterotrimetallic sandwich complexes supported by sulfonamido ligands
    journal, January 2016

    • Wallen, Christian M.; Wielizcko, Marika; Bacsa, John
    • Inorganic Chemistry Frontiers, Vol. 3, Issue 1
    • DOI: 10.1039/c5qi00233h

    Heterotrimetallic sandwich complexes supported by sulfonamido ligands
    journal, January 2016

    • Wallen, Christian M.; Wielizcko, Marika; Bacsa, John
    • Inorganic Chemistry Frontiers, Vol. 3, Issue 1
    • DOI: 10.1039/c5qi00233h