skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: High-contrast and fast electrochromic switching enabled by plasmonics

Abstract

With vibrant colours and simple, room-temperature processing methods, electrochromic polymers have attracted attention as active materials for flexible, low-power-consuming devices. However, slow switching speeds in devices realized to date, as well as the complexity of having to combine several distinct polymers to achieve a full-colour gamut, have limited electrochromic materials to niche applications. Here we achieve fast, high-contrast electrochromic switching by significantly enhancing the interaction of light—propagating as deep-subwavelength-confined surface plasmon polaritons through arrays of metallic nanoslits, with an electrochromic polymer—present as an ultra-thin coating on the slit sidewalls. The switchable configuration retains the short temporal charge-diffusion characteristics of thin electrochromic films, while maintaining the high optical contrast associated with thicker electrochromic coatings. In conclusion, we further demonstrate that by controlling the pitch of the nanoslit arrays, it is possible to achieve a full-colour response with high contrast and fast switching speeds, while relying on just one electrochromic polymer.

Authors:
 [1];  [2];  [2];  [3];  [2];  [2];  [3];  [4]
  1. Nanjing Univ., Nanjing (China); National Institute of Standards and Technology, Gaithersburg, MD (United States); Univ. of Maryland, College Park, MD (United States)
  2. National Institute of Standards and Technology, Gaithersburg, MD (United States); Univ. of Maryland, College Park, MD (United States)
  3. National Institute of Standards and Technology, Gaithersburg, MD (United States)
  4. National Institute of Standards and Technology, Gaithersburg, MD (United States); Sandia National Lab. (SNL-CA), Livermore, CA (United States)
Publication Date:
Research Org.:
Sandia National Lab. (SNL-CA), Livermore, CA (United States); Energy Frontier Research Centers (EFRC) (United States). Nanostructures for Electrical Energy Storage (NEES)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1260969
Alternate Identifier(s):
OSTI ID: 1338383
Report Number(s):
SAND2016-12382J
Journal ID: ISSN 2041-1723; ncomms10479
Grant/Contract Number:  
SC0001160; AC04-94AL85000; 70NANB10H193
Resource Type:
Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 7; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Xu, Ting, Walter, Erich C., Agrawal, Amit, Bohn, Christopher, Velmurugan, Jeyavel, Zhu, Wenqi, Lezec, Henri J., and Talin, A. Alec. High-contrast and fast electrochromic switching enabled by plasmonics. United States: N. p., 2016. Web. doi:10.1038/ncomms10479.
Xu, Ting, Walter, Erich C., Agrawal, Amit, Bohn, Christopher, Velmurugan, Jeyavel, Zhu, Wenqi, Lezec, Henri J., & Talin, A. Alec. High-contrast and fast electrochromic switching enabled by plasmonics. United States. doi:10.1038/ncomms10479.
Xu, Ting, Walter, Erich C., Agrawal, Amit, Bohn, Christopher, Velmurugan, Jeyavel, Zhu, Wenqi, Lezec, Henri J., and Talin, A. Alec. Wed . "High-contrast and fast electrochromic switching enabled by plasmonics". United States. doi:10.1038/ncomms10479. https://www.osti.gov/servlets/purl/1260969.
@article{osti_1260969,
title = {High-contrast and fast electrochromic switching enabled by plasmonics},
author = {Xu, Ting and Walter, Erich C. and Agrawal, Amit and Bohn, Christopher and Velmurugan, Jeyavel and Zhu, Wenqi and Lezec, Henri J. and Talin, A. Alec},
abstractNote = {With vibrant colours and simple, room-temperature processing methods, electrochromic polymers have attracted attention as active materials for flexible, low-power-consuming devices. However, slow switching speeds in devices realized to date, as well as the complexity of having to combine several distinct polymers to achieve a full-colour gamut, have limited electrochromic materials to niche applications. Here we achieve fast, high-contrast electrochromic switching by significantly enhancing the interaction of light—propagating as deep-subwavelength-confined surface plasmon polaritons through arrays of metallic nanoslits, with an electrochromic polymer—present as an ultra-thin coating on the slit sidewalls. The switchable configuration retains the short temporal charge-diffusion characteristics of thin electrochromic films, while maintaining the high optical contrast associated with thicker electrochromic coatings. In conclusion, we further demonstrate that by controlling the pitch of the nanoslit arrays, it is possible to achieve a full-colour response with high contrast and fast switching speeds, while relying on just one electrochromic polymer.},
doi = {10.1038/ncomms10479},
journal = {Nature Communications},
number = ,
volume = 7,
place = {United States},
year = {2016},
month = {1}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 27 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

An electrophoretic ink for all-printed reflective electronic displays
journal, July 1998

  • Comiskey, Barrett; Albert, J. D.; Yoshizawa, Hidekazu
  • Nature, Vol. 394, Issue 6690
  • DOI: 10.1038/28349

The history of liquid-crystal displays
journal, April 2002


Organic electroluminescent diodes
journal, September 1987

  • Tang, C. W.; VanSlyke, S. A.
  • Applied Physics Letters, Vol. 51, Issue 12
  • DOI: 10.1063/1.98799

Photonic Papers and Inks: Color Writing with Colorless Materials
journal, June 2003


Photonic-crystal full-colour displays
journal, August 2007

  • Arsenault, André C.; Puzzo, Daniel P.; Manners, Ian
  • Nature Photonics, Vol. 1, Issue 8, p. 468-472
  • DOI: 10.1038/nphoton.2007.140

Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal
journal, August 2009


Contact Printing of Quantum Dot Light-Emitting Devices
journal, December 2008

  • Kim, LeeAnn; Anikeeva, Polina O.; Coe-Sullivan, Seth A.
  • Nano Letters, Vol. 8, Issue 12
  • DOI: 10.1021/nl8025218

High-performance crosslinked colloidal quantum-dot light-emitting diodes
journal, May 2009


Full-colour quantum dot displays fabricated by transfer printing
journal, February 2011


Optical Properties and Color‐Center Formation in Thin Films of Molybdenum Trioxide
journal, December 1966

  • Deb, S. K.; Chopoorian, J. A.
  • Journal of Applied Physics, Vol. 37, Issue 13
  • DOI: 10.1063/1.1708145

Electrochromic Systems and the Prospects for Devices
journal, June 2001


Electrochromic materials and devices: present and future
journal, January 2003


Multicolored Electrochromism in Polymers: Structures and Devices
journal, November 2004

  • Argun, Avni A.; Aubert, Pierre-Henri; Thompson, Barry C.
  • Chemistry of Materials, Vol. 16, Issue 23
  • DOI: 10.1021/cm049669l

Electrochromic organic and polymeric materials for display applications
journal, January 2006


Electronic paper rewrites the rulebook for displays
journal, May 2007


Millisecond switching in solid state electrochromic polymer devices fabricated from ionic self-assembled multilayers
journal, January 2008

  • Jain, Vaibhav; Yochum, Hank M.; Montazami, Reza
  • Applied Physics Letters, Vol. 92, Issue 3
  • DOI: 10.1063/1.2834818

Nano-optics of surface plasmon polaritons
journal, March 2005


Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions
journal, January 2006


Molecule–Surface Plasmon Interactions in Hole Arrays: Enhanced Absorption, Refractive Index Changes, and All-Optical Switching
journal, May 2006

  • Dintinger, J.; Klein, S.; Ebbesen, T. W.
  • Advanced Materials, Vol. 18, Issue 10
  • DOI: 10.1002/adma.200502393

Active Plasmonic Devices with Anisotropic Optical Response: A Step Toward Active Polarizer
journal, May 2009

  • Leroux, Yann; Lacroix, Jean Christophe; Fave, Claire
  • Nano Letters, Vol. 9, Issue 5
  • DOI: 10.1021/nl900695j

Giant Plasmon Resonance Shift Using Poly(3,4-ethylenedioxythiophene) Electrochemical Switching
journal, August 2010

  • Stockhausen, Verena; Martin, Pascal; Ghilane, Jalal
  • Journal of the American Chemical Society, Vol. 132, Issue 30
  • DOI: 10.1021/ja103337d

Electrically Tunable Plasmonic Behavior of Nanocube–Polymer Nanomaterials Induced by a Redox-Active Electrochromic Polymer
journal, May 2014

  • König, Tobias A. F.; Ledin, Petr A.; Kerszulis, Justin
  • ACS Nano, Vol. 8, Issue 6
  • DOI: 10.1021/nn501601e

An Integrated Electrochromic Nanoplasmonic Optical Switch
journal, July 2011

  • Agrawal, Amit; Susut, Ceren; Stafford, Gery
  • Nano Letters, Vol. 11, Issue 7
  • DOI: 10.1021/nl201064x

Growth of electropolymerized polyaniline thin films
journal, October 1993

  • Guiseppi-Elie, A.; Pradhan, S. R.; Wilson, A. M.
  • Chemistry of Materials, Vol. 5, Issue 10
  • DOI: 10.1021/cm00034a017

Colours from electroactive polymers: Electrochromic, electroluminescent and laser devices based on organic materials
journal, June 2006


Electrochemical and ellipsometric studies of polyaniline films grown under cycling conditions
journal, May 1997


Plasmonic photon sorters for spectral and polarimetric imaging
journal, February 2008

  • Laux, Eric; Genet, Cyriaque; Skauli, Torbjorn
  • Nature Photonics, Vol. 2, Issue 3, p. 161-164
  • DOI: 10.1038/nphoton.2008.1

Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging
journal, August 2010

  • Xu, Ting; Wu, Yi-Kuei; Luo, Xiangang
  • Nature Communications, Vol. 1, Issue 5, p. 1-5
  • DOI: 10.1038/ncomms1058

High transmission and low color cross-talk plasmonic color filters using triangular-lattice hole arrays in aluminum films
journal, June 2010

  • Chen, Qin; Cumming, David R. S.
  • Optics Express, Vol. 18, Issue 13, p. 14056-14062
  • DOI: 10.1364/OE.18.014056

Structural Colors: From Plasmonic to Carbon Nanostructures
journal, September 2011


High efficiency resonance-based spectrum filters with tunable transmission bandwidth fabricated using nanoimprint lithography
journal, October 2011

  • Kaplan, Alex F.; Xu, Ting; Jay Guo, L.
  • Applied Physics Letters, Vol. 99, Issue 14, Article No. 143111
  • DOI: 10.1063/1.3647633

Plasmonic Color Filters for CMOS Image Sensor Applications
journal, July 2012

  • Yokogawa, Sozo; Burgos, Stanley P.; Atwater, Harry A.
  • Nano Letters, Vol. 12, Issue 8
  • DOI: 10.1021/nl302110z

Variable-color poly(3,4-propylenedioxythiophene) electrochromics from precursor polymers
journal, January 2010


16.3″ QSXGA high resolution wide viewing angle TFT-LCDs based on ridge and fringe-field structures
journal, March 2001


High-Speed Roll-to-Roll Nanoimprint Lithography on Flexible Plastic Substrates
journal, June 2008


Transfer Printing of Nanoplasmonic Devices onto Flexible Polymer Substrates from a Rigid Stamp
journal, June 2012


    Works referencing / citing this record:

    Plasmonic Responses in Metal Nanoslit Array Fabricated by Interference Lithography
    journal, September 2016

    • Zhang, Nan; Wu, Lin; Bai, Ping
    • Journal of Molecular and Engineering Materials, Vol. 04, Issue 03
    • DOI: 10.1142/s2251237316400074

    Structural coloration by inkjet-printing of optical microcavities and metasurfaces
    journal, January 2019

    • Sardar, Samim; Wojcik, Pawel; Kang, Evan S. H.
    • Journal of Materials Chemistry C, Vol. 7, Issue 28
    • DOI: 10.1039/c9tc02796c

    Bioinspired Stimuli-Responsive Color-Changing Systems
    journal, April 2018


    Methodologies for On‐Demand Dispersion Engineering of Waves in Metasurfaces
    journal, March 2019

    • Pu, Mingbo; Guo, Yinghui; Ma, Xiaoliang
    • Advanced Optical Materials, Vol. 7, Issue 14
    • DOI: 10.1002/adom.201801376

    Bioinspired Stimuli-Responsive Color-Changing Systems
    journal, April 2018


    Methodologies for On‐Demand Dispersion Engineering of Waves in Metasurfaces
    journal, March 2019

    • Pu, Mingbo; Guo, Yinghui; Ma, Xiaoliang
    • Advanced Optical Materials, Vol. 7, Issue 14
    • DOI: 10.1002/adom.201801376

    Review of Metasurface Plasmonic Structural Color
    journal, October 2016


    Structural coloration by inkjet-printing of optical microcavities and metasurfaces
    journal, January 2019

    • Sardar, Samim; Wojcik, Pawel; Kang, Evan S. H.
    • Journal of Materials Chemistry C, Vol. 7, Issue 28
    • DOI: 10.1039/c9tc02796c

    Plasmonic Responses in Metal Nanoslit Array Fabricated by Interference Lithography
    journal, September 2016

    • Zhang, Nan; Wu, Lin; Bai, Ping
    • Journal of Molecular and Engineering Materials, Vol. 04, Issue 03
    • DOI: 10.1142/s2251237316400074