DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Electrostatic analyzer measurements of ionospheric thermal ion populations

Abstract

Here, we define the observational parameter regime necessary for observing low-altitude ionospheric origins of high-latitude ion upflow/outflow. We present measurement challenges and identify a new analysis technique which mitigates these impediments. To probe the initiation of auroral ion upflow, it is necessary to examine the thermal ion population at 200-350 km, where typical thermal energies are tenths of eV. Interpretation of the thermal ion distribution function measurement requires removal of payload sheath and ram effects. We use a 3-D Maxwellian model to quantify how observed ionospheric parameters such as density, temperature, and flows affect in situ measurements of the thermal ion distribution function. We define the viable acceptance window of a typical top-hat electrostatic analyzer in this regime and show that the instrument's energy resolution prohibits it from directly observing the shape of the particle spectra. To extract detailed information about measured particle population, we define two intermediate parameters from the measured distribution function, then use a Maxwellian model to replicate possible measured parameters for comparison to the data. Liouville's theorem and the thin-sheath approximation allow us to couple the measured and modeled intermediate parameters such that measurements inside the sheath provide information about plasma outside the sheath. We applymore » this technique to sounding rocket data to show that careful windowing of the data and Maxwellian models allows for extraction of the best choice of geophysical parameters. More widespread use of this analysis technique will help our community expand its observational database of the seed regions of ionospheric outflows.« less

Authors:
 [1];  [2]
  1. Dartmouth College, Hanover, NH (United States); ISR-1 Space Science and Applications, Los Alamos, NM (United States)
  2. Dartmouth College, Hanover, NH (United States)
Publication Date:
Research Org.:
Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1260565
Report Number(s):
LA-UR-16-21085
Journal ID: ISSN 2169-9380
Grant/Contract Number:  
AC52-06NA25396
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Geophysical Research. Space Physics
Additional Journal Information:
Journal Name: Journal of Geophysical Research. Space Physics; Journal ID: ISSN 2169-9380
Publisher:
American Geophysical Union
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; Ionospheric physics; thermal ion measurements; space physics; electrostatic analyzer; ion outflow; instrumentation

Citation Formats

Fernandes, P. A., and Lynch, K. A. Electrostatic analyzer measurements of ionospheric thermal ion populations. United States: N. p., 2016. Web. doi:10.1002/2016JA022582.
Fernandes, P. A., & Lynch, K. A. Electrostatic analyzer measurements of ionospheric thermal ion populations. United States. https://doi.org/10.1002/2016JA022582
Fernandes, P. A., and Lynch, K. A. Sat . "Electrostatic analyzer measurements of ionospheric thermal ion populations". United States. https://doi.org/10.1002/2016JA022582. https://www.osti.gov/servlets/purl/1260565.
@article{osti_1260565,
title = {Electrostatic analyzer measurements of ionospheric thermal ion populations},
author = {Fernandes, P. A. and Lynch, K. A.},
abstractNote = {Here, we define the observational parameter regime necessary for observing low-altitude ionospheric origins of high-latitude ion upflow/outflow. We present measurement challenges and identify a new analysis technique which mitigates these impediments. To probe the initiation of auroral ion upflow, it is necessary to examine the thermal ion population at 200-350 km, where typical thermal energies are tenths of eV. Interpretation of the thermal ion distribution function measurement requires removal of payload sheath and ram effects. We use a 3-D Maxwellian model to quantify how observed ionospheric parameters such as density, temperature, and flows affect in situ measurements of the thermal ion distribution function. We define the viable acceptance window of a typical top-hat electrostatic analyzer in this regime and show that the instrument's energy resolution prohibits it from directly observing the shape of the particle spectra. To extract detailed information about measured particle population, we define two intermediate parameters from the measured distribution function, then use a Maxwellian model to replicate possible measured parameters for comparison to the data. Liouville's theorem and the thin-sheath approximation allow us to couple the measured and modeled intermediate parameters such that measurements inside the sheath provide information about plasma outside the sheath. We apply this technique to sounding rocket data to show that careful windowing of the data and Maxwellian models allows for extraction of the best choice of geophysical parameters. More widespread use of this analysis technique will help our community expand its observational database of the seed regions of ionospheric outflows.},
doi = {10.1002/2016JA022582},
journal = {Journal of Geophysical Research. Space Physics},
number = ,
volume = ,
place = {United States},
year = {Sat Jul 09 00:00:00 EDT 2016},
month = {Sat Jul 09 00:00:00 EDT 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 7 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

SERSIO: Svalbard EISCAT Rocket Study of Ion Outflows: SERSIO
journal, August 2007

  • Frederick-Frost, K. M.; Lynch, K. A.; Kintner, P. M.
  • Journal of Geophysical Research: Space Physics, Vol. 112, Issue A8
  • DOI: 10.1029/2006JA011942

Core ion interactions with BB ELF, lower hybrid, and Alfvén waves in the high-latitude topside ionosphere
journal, January 2004


The transient response of the topside ionosphere to precipitation
journal, August 1977


Note: Flowing ion population from a resonance cavity source
journal, April 2011

  • Gayetsky, Lisa E.; Lynch, Kristina A.
  • Review of Scientific Instruments, Vol. 82, Issue 4
  • DOI: 10.1063/1.3584969

Transversely accelerated ions: An ionospheric source of hot magnetospheric ions
journal, August 1979


Auroral ion acceleration from lower hybrid solitary structures: A summary of sounding rocket observations
journal, December 1999

  • Lynch, K. A.; Arnoldy, R. L.; Kintner, P. M.
  • Journal of Geophysical Research: Space Physics, Vol. 104, Issue A12
  • DOI: 10.1029/1999JA900289

The ionosphere as a fully adequate source of plasma for the Earth's magnetosphere
journal, January 1987

  • Chappell, C. R.; Moore, T. E.; Waite, J. H.
  • Journal of Geophysical Research, Vol. 92, Issue A6
  • DOI: 10.1029/JA092iA06p05896

Use of the thin sheath approximation for obtaining ion temperatures from the ISEE 1 limited aperture RPA
journal, July 1982

  • Comfort, R. H.; Baugher, C. R.; Chappell, C. R.
  • Journal of Geophysical Research: Space Physics, Vol. 87, Issue A7
  • DOI: 10.1029/JA087iA07p05109

Thermal ion upflow in the cusp ionosphere and its dependence on soft electron energy flux: CUSP THERMAL ION UPFLOW
journal, May 2010

  • Burchill, J. K.; Knudsen, D. J.; Clemmons, J. H.
  • Journal of Geophysical Research: Space Physics, Vol. 115, Issue A5
  • DOI: 10.1029/2009JA015006

Low energy stable plasma calibration facility
journal, July 2007

  • Frederick-Frost, K. M.; Lynch, K. A.
  • Review of Scientific Instruments, Vol. 78, Issue 7
  • DOI: 10.1063/1.2756996

2π‐radian field‐of‐view toroidal electrostatic analyzer
journal, May 1988

  • Young, D. T.; Bame, S. J.; Thomsen, M. F.
  • Review of Scientific Instruments, Vol. 59, Issue 5
  • DOI: 10.1063/1.1139821

A low-energy charged particle distribution imager with a compact sensor for space applications
journal, January 2003

  • Knudsen, D. J.; Burchill, J. K.; Berg, K.
  • Review of Scientific Instruments, Vol. 74, Issue 1
  • DOI: 10.1063/1.1525869

Satellite observations of energetic heavy ions during a geomagnetic storm
journal, November 1972

  • Shelley, E. G.; Johnson, R. G.; Sharp, R. D.
  • Journal of Geophysical Research, Vol. 77, Issue 31
  • DOI: 10.1029/JA077i031p06104

A laboratory experiment to examine the effect of auroral beams on spacecraft charging in the ionosphere
journal, September 2011

  • Siddiqui, M. U.; Gayetsky, L. E.; Mella, M. R.
  • Physics of Plasmas, Vol. 18, Issue 9
  • DOI: 10.1063/1.3640512

An instrument for rapidly measuring plasma distribution functions with high resolution
journal, January 1982


SCIFER-Structure of the Cleft Ion Fountain at 1400 km altitude
journal, July 1996

  • Arnoldy, R. L.; Lynch, K. A.; Kintner, P. M.
  • Geophysical Research Letters, Vol. 23, Issue 14
  • DOI: 10.1029/96GL00475

Earth’s ionospheric outflow dominated by hidden cold plasma
journal, December 2008

  • Engwall, E.; Eriksson, A. I.; Cully, C. M.
  • Nature Geoscience, Vol. 2, Issue 1
  • DOI: 10.1038/ngeo387

SCIFER-Transverse ion acceleration and plasma waves
journal, July 1996

  • Kintner, Paul M.; Bonnell, John; Arnoldy, Roger
  • Geophysical Research Letters, Vol. 23, Issue 14
  • DOI: 10.1029/96GL01863

Statistical relationships between high-latitude ionospheric F region/topside upflows and their drivers: DE 2 observations
journal, April 1997

  • Seo, Y.; Horwitz, J. L.; Caton, R.
  • Journal of Geophysical Research: Space Physics, Vol. 102, Issue A4
  • DOI: 10.1029/97JA00151

Rocket-based measurements of ion velocity, neutral wind, and electric field in the collisional transition region of the auroral ionosphere: E REGION ION DEMAGNETIZATION
journal, April 2009

  • Sangalli, L.; Knudsen, D. J.; Larsen, M. F.
  • Journal of Geophysical Research: Space Physics, Vol. 114, Issue A4
  • DOI: 10.1029/2008JA013757

Dynamic variability in F-region ionospheric composition at auroral arc boundaries
journal, January 2010


Anisotropic core ion temperatures associated with strong zonal flows and upflows: ARCHER ET AL.
journal, February 2015

  • Archer, W. E.; Knudsen, D. J.; Burchill, J. K.
  • Geophysical Research Letters, Vol. 42, Issue 4
  • DOI: 10.1002/2014GL062695

Measuring the seeds of ion outflow: Auroral sounding rocket observations of low‐altitude ion heating and circulation
journal, February 2016

  • Fernandes, P. A.; Lynch, K. A.; Zettergren, M.
  • Journal of Geophysical Research: Space Physics, Vol. 121, Issue 2
  • DOI: 10.1002/2015JA021536

Thermal Electron Temperature Measurements from the Freja Cold Plasma Analyzer
book, March 2013

  • Knudsen, D. J.; Phan, T. D.; Gladders, M. D.
  • Measurement Techniques in Space Plasmas: Particles
  • DOI: 10.1029/GM102p0091

Studies of the composition of the ionosphere with a magnetic deflection mass spectrometer
journal, July 1970


MICA sounding rocket observations of conductivity‐gradient‐generated auroral ionospheric responses: Small‐scale structure with large‐scale drivers
journal, November 2015

  • Lynch, K. A.; Hampton, D. L.; Zettergren, M.
  • Journal of Geophysical Research: Space Physics, Vol. 120, Issue 11
  • DOI: 10.1002/2014JA020860

Including sheath effects in the interpretation of planar retarding potential analyzer’s low-energy ion data
journal, April 2016

  • Fisher, L. E.; Lynch, K. A.; Fernandes, P. A.
  • Review of Scientific Instruments, Vol. 87, Issue 4
  • DOI: 10.1063/1.4944416

Upwelling O + ion source characteristics
journal, January 1986

  • Moore, T. E.; Lockwood, M.; Chandler, M. O.
  • Journal of Geophysical Research, Vol. 91, Issue A6
  • DOI: 10.1029/JA091iA06p07019

Works referencing / citing this record:

Sheath characteristics in a magnetically filtered low density low temperature multicomponent plasma with negative ions
journal, December 2019

  • Borgohain, Binita; Bailung, H.
  • Physics of Plasmas, Vol. 26, Issue 12
  • DOI: 10.1063/1.5126933