DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Tire-derived carbon composite anodes for sodium-ion batteries

Abstract

We report that hard-carbon materials are considered as one of the most promising anodes for the emerging sodium-ion batteries. Here, we report a low-cost, scalable waste tire-derived carbon as an anode for sodium-ion batteries (SIBs). The tire-derived carbons obtained by pyrolyzing the acid-treated tire at 1100 °C, 1400 °C and 1600 °C show capacities of 179, 185 and 203 mAh g-1, respectively, after 100 cycles at a current density of 20 mA g-1 in sodium-ion batteries with good electrochemical stability. The portion of the low-voltage plateau region in the charge-discharge curves increases as the heat-treatment temperature increases. The low-voltage plateau is beneficial to enhance the energy density of the full cell. However, this plateau suffers rapid capacity fade at higher current densities. This study provides a new pathway for inexpensive, environmentally benign and value-added waste tire-derived products towards large-scale energy storage applications.

Authors:
 [1]; ORCiD logo [1];  [2];  [2];  [3];  [3];  [4];  [5];  [5];  [4]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States)
  2. Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  3. RJ Lee Group, Monroeville, PA (United States)
  4. Univ. of Texas, Austin, TX (United States)
  5. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1260078
Alternate Identifier(s):
OSTI ID: 1359468
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Power Sources
Additional Journal Information:
Journal Volume: 316; Journal Issue: C; Journal ID: ISSN 0378-7753
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; Sodium-ion batteries (SIBs); Tire-derived carbon; Tire recycling; Low-cost anodes

Citation Formats

Li, Yunchao, Paranthaman, M. Parans, Akato, Kokouvi, Naskar, Amit K., Levine, Alan M., Lee, Richard J., Kim, Sang-Ok, Zhang, Jinshui, Dai, Sheng, and Manthiram, Arumugam. Tire-derived carbon composite anodes for sodium-ion batteries. United States: N. p., 2016. Web. doi:10.1016/j.jpowsour.2016.03.071.
Li, Yunchao, Paranthaman, M. Parans, Akato, Kokouvi, Naskar, Amit K., Levine, Alan M., Lee, Richard J., Kim, Sang-Ok, Zhang, Jinshui, Dai, Sheng, & Manthiram, Arumugam. Tire-derived carbon composite anodes for sodium-ion batteries. United States. https://doi.org/10.1016/j.jpowsour.2016.03.071
Li, Yunchao, Paranthaman, M. Parans, Akato, Kokouvi, Naskar, Amit K., Levine, Alan M., Lee, Richard J., Kim, Sang-Ok, Zhang, Jinshui, Dai, Sheng, and Manthiram, Arumugam. Mon . "Tire-derived carbon composite anodes for sodium-ion batteries". United States. https://doi.org/10.1016/j.jpowsour.2016.03.071. https://www.osti.gov/servlets/purl/1260078.
@article{osti_1260078,
title = {Tire-derived carbon composite anodes for sodium-ion batteries},
author = {Li, Yunchao and Paranthaman, M. Parans and Akato, Kokouvi and Naskar, Amit K. and Levine, Alan M. and Lee, Richard J. and Kim, Sang-Ok and Zhang, Jinshui and Dai, Sheng and Manthiram, Arumugam},
abstractNote = {We report that hard-carbon materials are considered as one of the most promising anodes for the emerging sodium-ion batteries. Here, we report a low-cost, scalable waste tire-derived carbon as an anode for sodium-ion batteries (SIBs). The tire-derived carbons obtained by pyrolyzing the acid-treated tire at 1100 °C, 1400 °C and 1600 °C show capacities of 179, 185 and 203 mAh g-1, respectively, after 100 cycles at a current density of 20 mA g-1 in sodium-ion batteries with good electrochemical stability. The portion of the low-voltage plateau region in the charge-discharge curves increases as the heat-treatment temperature increases. The low-voltage plateau is beneficial to enhance the energy density of the full cell. However, this plateau suffers rapid capacity fade at higher current densities. This study provides a new pathway for inexpensive, environmentally benign and value-added waste tire-derived products towards large-scale energy storage applications.},
doi = {10.1016/j.jpowsour.2016.03.071},
journal = {Journal of Power Sources},
number = C,
volume = 316,
place = {United States},
year = {Mon Apr 04 00:00:00 EDT 2016},
month = {Mon Apr 04 00:00:00 EDT 2016}
}

Journal Article:

Citation Metrics:
Cited by: 63 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

The Emerging Chemistry of Sodium Ion Batteries for Electrochemical Energy Storage
journal, February 2015

  • Kundu, Dipan; Talaie, Elahe; Duffort, Victor
  • Angewandte Chemie International Edition, Vol. 54, Issue 11
  • DOI: 10.1002/anie.201410376

Electrode Materials for Rechargeable Sodium-Ion Batteries: Potential Alternatives to Current Lithium-Ion Batteries
journal, May 2012

  • Kim, Sung-Wook; Seo, Dong-Hwa; Ma, Xiaohua
  • Advanced Energy Materials, Vol. 2, Issue 7, p. 710-721
  • DOI: 10.1002/aenm.201200026

Room-temperature stationary sodium-ion batteries for large-scale electric energy storage
journal, January 2013

  • Pan, Huilin; Hu, Yong-Sheng; Chen, Liquan
  • Energy & Environmental Science, Vol. 6, Issue 8
  • DOI: 10.1039/c3ee40847g

A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries
journal, September 2007

  • Ellis, B. L.; Makahnouk, W. R. M.; Makimura, Y.
  • Nature Materials, Vol. 6, Issue 10
  • DOI: 10.1038/nmat2007

Synthesis, Structure, and Electrochemical Properties of the Layered Sodium Insertion Cathode Material: NaNi 1 / 3 Mn 1 / 3 Co 1 / 3 O 2
journal, April 2012

  • Sathiya, M.; Hemalatha, K.; Ramesha, K.
  • Chemistry of Materials, Vol. 24, Issue 10
  • DOI: 10.1021/cm300466b

P2-type Na 2/3 Ni 1/3 Mn 2/3−x Ti x O 2 as a new positive electrode for higher energy Na-ion batteries
journal, January 2014

  • Yoshida, Hiroaki; Yabuuchi, Naoaki; Kubota, Kei
  • Chem. Commun., Vol. 50, Issue 28
  • DOI: 10.1039/C3CC49856E

P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries
journal, April 2012

  • Yabuuchi, Naoaki; Kajiyama, Masataka; Iwatate, Junichi
  • Nature Materials, Vol. 11, Issue 6
  • DOI: 10.1038/nmat3309

Transition metal oxide-carbon composites as conversion anodes for sodium-ion battery
journal, August 2015


Conversion reactions for sodium-ion batteries
journal, January 2013

  • Klein, Franziska; Jache, Birte; Bhide, Amrtha
  • Physical Chemistry Chemical Physics, Vol. 15, Issue 38
  • DOI: 10.1039/c3cp52125g

New materials based on a layered sodium titanate for dual electrochemical Na and Li intercalation systems
journal, January 2013

  • Shirpour, Mona; Cabana, Jordi; Doeff, Marca
  • Energy & Environmental Science, Vol. 6, Issue 8
  • DOI: 10.1039/c3ee41037d

Recent Development on Anodes for Na-Ion Batteries
journal, January 2015


Electrochemical intercalation of sodium in graphite
journal, September 1988


The Mechanisms of Lithium and Sodium Insertion in Carbon Materials
journal, January 2001

  • Stevens, D. A.; Dahn, J. R.
  • Journal of The Electrochemical Society, Vol. 148, Issue 8
  • DOI: 10.1149/1.1379565

Sodium Ion Insertion in Hollow Carbon Nanowires for Battery Applications
journal, June 2012

  • Cao, Yuliang; Xiao, Lifen; Sushko, Maria L.
  • Nano Letters, Vol. 12, Issue 7
  • DOI: 10.1021/nl3016957

Use of Graphite as a Highly Reversible Electrode with Superior Cycle Life for Sodium-Ion Batteries by Making Use of Co-Intercalation Phenomena
journal, July 2014

  • Jache, Birte; Adelhelm, Philipp
  • Angewandte Chemie International Edition, Vol. 53, Issue 38
  • DOI: 10.1002/anie.201403734

High Capacity Anode Materials for Rechargeable Sodium-Ion Batteries
journal, January 2000

  • Stevens, D. A.; Dahn, J. R.
  • Journal of The Electrochemical Society, Vol. 147, Issue 4
  • DOI: 10.1149/1.1393348

Reduced graphene oxide with superior cycling stability and rate capability for sodium storage
journal, June 2013


Expanded graphite as superior anode for sodium-ion batteries
journal, June 2014

  • Wen, Yang; He, Kai; Zhu, Yujie
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms5033

Amorphous monodispersed hard carbon micro-spherules derived from biomass as a high performance negative electrode material for sodium-ion batteries
journal, January 2015

  • Li, Yunming; Xu, Shuyin; Wu, Xiaoyan
  • Journal of Materials Chemistry A, Vol. 3, Issue 1
  • DOI: 10.1039/C4TA05451B

High-Density Sodium and Lithium Ion Battery Anodes from Banana Peels
journal, June 2014

  • Lotfabad, Elmira Memarzadeh; Ding, Jia; Cui, Kai
  • ACS Nano, Vol. 8, Issue 7, p. 7115-7129
  • DOI: 10.1021/nn502045y

Effects of Pore Structure on Performance of An Activated-Carbon Supercapacitor Electrode Recycled from Scrap Waste Tires
journal, June 2014

  • Zhi, Mingjia; Yang, Feng; Meng, Fanke
  • ACS Sustainable Chemistry & Engineering, Vol. 2, Issue 7, p. 1592-1598
  • DOI: 10.1021/sc500336h

A review of dipentene (dl-limonene) production from waste tire pyrolysis
journal, March 2015

  • Danon, B.; van der Gryp, P.; Schwarz, C. E.
  • Journal of Analytical and Applied Pyrolysis, Vol. 112
  • DOI: 10.1016/j.jaap.2014.12.025

Liquefaction of waste tires by pyrolysis for oil and chemicals—A review
journal, May 2013

  • Quek, Augustine; Balasubramanian, Rajasekhar
  • Journal of Analytical and Applied Pyrolysis, Vol. 101, p. 1-16
  • DOI: 10.1016/j.jaap.2013.02.016

Tailored recovery of carbons from waste tires for enhanced performance as anodes in lithium-ion batteries
journal, January 2014

  • Naskar, Amit K.; Bi, Zhonghe; Li, Yunchao
  • RSC Advances, Vol. 4, Issue 72, p. 38213-38221
  • DOI: 10.1039/C4RA03888F

Waste Tire Derived Carbon-Polymer Composite Paper as Pseudocapacitive Electrode with Long Cycle Life
journal, September 2015

  • Boota, M.; Paranthaman, M. Parans; Naskar, Amit K.
  • ChemSusChem, Vol. 8, Issue 21, p. 3576-3581
  • DOI: 10.1002/cssc.201500866

The “falling cards model” for the structure of microporous carbons
journal, January 1997


Interpretation of Raman spectra of disordered and amorphous carbon
journal, May 2000


Raman spectroscopy of amorphous, nanostructured, diamond–like carbon, and nanodiamond
journal, September 2004

  • Ferrari, Andrea Carlo; Robertson, John
  • Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, Vol. 362, Issue 1824
  • DOI: 10.1098/rsta.2004.1452

Mechanisms for Lithium Insertion in Carbonaceous Materials
journal, October 1995


Reduction of the Irreversible Capacity in Hard-Carbon Anode Materials Prepared from Sucrose for Li-Ion Batteries
journal, January 1998

  • Buiel, Edward
  • Journal of The Electrochemical Society, Vol. 145, Issue 6
  • DOI: 10.1149/1.1838585

Electrochemical Na Insertion and Solid Electrolyte Interphase for Hard-Carbon Electrodes and Application to Na-Ion Batteries
journal, August 2011

  • Komaba, Shinichi; Murata, Wataru; Ishikawa, Toru
  • Advanced Functional Materials, Vol. 21, Issue 20
  • DOI: 10.1002/adfm.201100854

New Mechanistic Insights on Na-Ion Storage in Nongraphitizable Carbon
journal, August 2015


Porous nitrogen doped carbon sphere as high performance anode of sodium-ion battery
journal, November 2015


Hollow Carbon Nanospheres with Superior Rate Capability for Sodium-Based Batteries
journal, May 2012

  • Tang, Kun; Fu, Lijun; White, Robin J.
  • Advanced Energy Materials, Vol. 2, Issue 7
  • DOI: 10.1002/aenm.201100691

Fast synthesis of carbon microspheres via a microwave-assisted reaction for sodium ion batteries
journal, January 2014

  • Chen, Taiqiang; Pan, Likun; Lu, Ting
  • J. Mater. Chem. A, Vol. 2, Issue 5
  • DOI: 10.1039/C3TA14037G

Nitrogen-Doped Porous Carbon Nanosheets as Low-Cost, High-Performance Anode Material for Sodium-Ion Batteries
journal, December 2012


Biomass derived hierarchical porous carbons as high-performance anodes for sodium-ion batteries
journal, January 2016


Works referencing / citing this record:

A review of hard carbon anode materials for sodium-ion batteries and their environmental assessment
journal, January 2019

  • Peters, Jens F.; Abdelbaky, Mohammad; Baumann, Manuel
  • Matériaux & Techniques, Vol. 107, Issue 5
  • DOI: 10.1051/mattech/2019029

Tailoring graphitic nanostructures in hard carbons as anode materials achieving efficient and ultrafast sodium storage
journal, April 2018


Sustainable Potassium-Ion Battery Anodes Derived from Waste-Tire Rubber
journal, January 2017

  • Li, Yunchao; Adams, Ryan A.; Arora, Anjela
  • Journal of The Electrochemical Society, Vol. 164, Issue 6
  • DOI: 10.1149/2.1391706jes

Magnetic adsorbents for selective removal of selenite from contaminated water
journal, February 2019


Sustainable Waste Tire Derived Carbon Material as a Potential Anode for Lithium-Ion Batteries
journal, August 2018

  • Gnanaraj, Joseph; Lee, Richard; Levine, Alan
  • Sustainability, Vol. 10, Issue 8
  • DOI: 10.3390/su10082840

Impact of the Acid Treatment on Lignocellulosic Biomass Hard Carbon for Sodium-Ion Battery Anodes
journal, July 2018


Engraving Electrolyte and Ion-Transport Tunnels in a Holey Carbon Nanosheet Array for Fast Sodium Ion Storage
journal, February 2018


Lignin-Derived Nitrogen-Doped Porous Carbon as a High-Rate Anode Material for Sodium Ion Batteries
journal, January 2019

  • Du, Leilei; Wu, Wei; Luo, Chao
  • Journal of The Electrochemical Society, Vol. 166, Issue 2
  • DOI: 10.1149/2.1361902jes

Energy storage applications of biomass-derived carbon materials: batteries and supercapacitors
journal, January 2017

  • Gao, Yong-Ping; Zhai, Zi-Bo; Huang, Ke-Jing
  • New Journal of Chemistry, Vol. 41, Issue 20
  • DOI: 10.1039/c7nj02580g

Research Update: Hard carbon with closed pores from pectin-free apple pomace waste for Na-ion batteries
journal, April 2018

  • Dou, Xinwei; Geng, Chenxi; Buchholz, Daniel
  • APL Materials, Vol. 6, Issue 4
  • DOI: 10.1063/1.5013132

Conversion of Waste Tire Rubber into High-Value-Added Carbon Supports for Electrocatalysis
journal, January 2018

  • Hood, Zachary D.; Yang, Xuan; Li, Yunchao
  • Journal of The Electrochemical Society, Vol. 165, Issue 14
  • DOI: 10.1149/2.1081813jes

Free‐standing nitrogen‐doped graphene‐carbon nanofiber composite mats: electrospinning synthesis and application as anode material for lithium‐ion batteries
journal, July 2019

  • Shan, Changsheng; Wang, Yong; Xie, Shuya
  • Journal of Chemical Technology & Biotechnology, Vol. 94, Issue 12
  • DOI: 10.1002/jctb.6114

Hard carbon anode materials for sodium-ion batteries
journal, December 2018


Engineering Anisotropically Curved Nitrogen-Doped Carbon Nanosheets with Recyclable Binary Flux for Sodium-Ion Storage
journal, April 2018


A review of hard carbon anode materials for sodium-ion batteries and their environmental assessment
text, January 2021


A review of hard carbon anode materials for sodium-ion batteries and their environmental assessment
text, January 2021