skip to main content


Title: Improved Li storage performance in SnO 2 nanocrystals by a synergetic doping

Tin dioxide (SnO 2) is a widely investigated lithium (Li) storage material because of its easy preparation, two-step storage mechanism and high specific capacity for lithium-ion batteries (LIBs). In this contribution, a phase-pure cobalt-doped SnO 2 (Co/SnO 2) and a cobalt and nitrogen co-doped SnO 2 (Co-N/SnO 2) nanocrystals are prepared to explore their Li storage behaviors. It is found that the morphology, specific surface area, and electrochemical properties could be largely modulated in the doped and co-doped SnO 2 nanocrystals. Gavalnostatic cycling results indicate that the Co-N/SnO 2 electrode delivers a specific capacity as high as 716 mAh g –1 after 50 cycles, and the same outstanding rate performance can be observed in subsequent cycles due to the ionic/electronic conductivity enhancement by co-doping effect. Further, microstructure observation indicates the existence of intermediate phase of Li 3N with high ionic conductivity upon cycling, which probably accounts for the improvements of Co-N/SnO 2 electrodes. Furthermore, we find that the method of synergetic doping into SnO 2 with Co and N, with which the electrochemical performances is enhanced remarkably, undoubtedly, will have an important influence on the material itself and community of LIBs as well.
 [1] ;  [2] ;  [3] ;  [1] ;  [4] ;  [3] ;  [5]
  1. Henan Univ., Kaifeng (People's Republic of China)
  2. McGill Univ., Montreal, QC (Canada)
  3. Chinese Academy of Sciences, Beijing (People's Republic of China)
  4. Henan Univ., Kaifeng (People's Republic of China); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  5. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Publication Date:
Grant/Contract Number:
50902044; 2015AA034201; 124200510004; AC05-00OR22725
Accepted Manuscript
Journal Name:
Scientific Reports
Additional Journal Information:
Journal Volume: 6; Journal ID: ISSN 2045-2322
Nature Publishing Group
Research Org:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Country of Publication:
United States
25 ENERGY STORAGE; batteries; electrochemistry
OSTI Identifier:
Alternate Identifier(s):
OSTI ID: 1311299