DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Artificial photosynthetic antennas and reaction centers

Abstract

Presently, the world is experiencing an unprecedented crisis associated with the CO2 produced by the use of fossil fuels to power our economies. As evidenced by the increasing levels in the atmosphere, the reduction of CO2 to biomass by photosynthesis cannot keep pace with production with the result that nature has lost control of the global carbon cycle. In order to restore control of the global carbon cycle to solar-driven processes, highly efficient artificial photosynthesis can augment photosynthesis in specific ways and places. The increased efficiency of artificial photosynthesis can provide both renewable carbon-based fuels and lower net atmospheric levels of CO2, which will preserve land and support the ecosystem services upon which all life on Earth depends. The development of artificial photosynthetic antennas and reaction centers contributes to the understanding of natural photosynthesis and to the knowledge base necessary for the development of future scalable technologies. This review focuses on the design and study of molecular and hybrid molecular-semiconductor nanoparticle based systems, all of which are inspired by functions found in photosynthesis and some of which are inspired by components of photosynthesis. In addition to constructs illustrating energy transfer, photoinduced electron transfer, charge shift reactions and proton coupled electronmore » transfer, our review covers systems that produce proton motive force.« less

Authors:
ORCiD logo [1];  [2];  [2];  [2]
  1. Univ. Paris-Saclay and Univ. Paris-Sud, Gif-sur-Yvette (France). Inst. for Integrative Biology of the Cell
  2. Arizona State Univ., Tempe, AZ (United States). School of Molecular Sciences
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC) (United States). Center for Bio-Inspired Solar Fuel Production (BISfuel); Arizona State Univ., Tempe, AZ (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES). Chemical Sciences, Geosciences, and Biosciences Division
OSTI Identifier:
1259376
Alternate Identifier(s):
OSTI ID: 1429376; OSTI ID: 1429377
Grant/Contract Number:  
FG02-03ER15393; SC0001016
Resource Type:
Published Article
Journal Name:
Comptes Rendus. Chimie
Additional Journal Information:
Journal Name: Comptes Rendus. Chimie Journal Volume: 20 Journal Issue: 3; Journal ID: ISSN 1631-0748
Publisher:
Cellule MathDoc/CEDRAM
Country of Publication:
Country unknown/Code not available
Language:
English
Subject:
Artificial photosynthesis; Solar energy conversion; Biomimicry; Sustainability; Photoinduced energy and charge transfer; processes; 14 SOLAR ENERGY; 32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION; 77 NANOSCIENCE AND NANOTECHNOLOGY

Citation Formats

Llansola-Portoles, Manuel J., Gust, Devens, Moore, Thomas A., and Moore, Ana L. Artificial photosynthetic antennas and reaction centers. Country unknown/Code not available: N. p., 2016. Web. doi:10.1016/j.crci.2016.05.016.
Llansola-Portoles, Manuel J., Gust, Devens, Moore, Thomas A., & Moore, Ana L. Artificial photosynthetic antennas and reaction centers. Country unknown/Code not available. https://doi.org/10.1016/j.crci.2016.05.016
Llansola-Portoles, Manuel J., Gust, Devens, Moore, Thomas A., and Moore, Ana L. Sat . "Artificial photosynthetic antennas and reaction centers". Country unknown/Code not available. https://doi.org/10.1016/j.crci.2016.05.016.
@article{osti_1259376,
title = {Artificial photosynthetic antennas and reaction centers},
author = {Llansola-Portoles, Manuel J. and Gust, Devens and Moore, Thomas A. and Moore, Ana L.},
abstractNote = {Presently, the world is experiencing an unprecedented crisis associated with the CO2 produced by the use of fossil fuels to power our economies. As evidenced by the increasing levels in the atmosphere, the reduction of CO2 to biomass by photosynthesis cannot keep pace with production with the result that nature has lost control of the global carbon cycle. In order to restore control of the global carbon cycle to solar-driven processes, highly efficient artificial photosynthesis can augment photosynthesis in specific ways and places. The increased efficiency of artificial photosynthesis can provide both renewable carbon-based fuels and lower net atmospheric levels of CO2, which will preserve land and support the ecosystem services upon which all life on Earth depends. The development of artificial photosynthetic antennas and reaction centers contributes to the understanding of natural photosynthesis and to the knowledge base necessary for the development of future scalable technologies. This review focuses on the design and study of molecular and hybrid molecular-semiconductor nanoparticle based systems, all of which are inspired by functions found in photosynthesis and some of which are inspired by components of photosynthesis. In addition to constructs illustrating energy transfer, photoinduced electron transfer, charge shift reactions and proton coupled electron transfer, our review covers systems that produce proton motive force.},
doi = {10.1016/j.crci.2016.05.016},
journal = {Comptes Rendus. Chimie},
number = 3,
volume = 20,
place = {Country unknown/Code not available},
year = {Sat Jun 18 00:00:00 EDT 2016},
month = {Sat Jun 18 00:00:00 EDT 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1016/j.crci.2016.05.016

Citation Metrics:
Cited by: 34 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Chemical approaches to artificial photosynthesis
journal, September 2012

  • Concepcion, J. J.; House, R. L.; Papanikolas, J. M.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 39
  • DOI: 10.1073/pnas.1212254109

Photoelectrochemical cells
journal, November 2001


Linkage and Solvent Dependence of Photoinduced Electron Transfer in Zincporphyrin-C 60 Dyads
journal, January 1996

  • Imahori, Hiroshi; Hagiwara, Kiyoshi; Aoki, Masanori
  • Journal of the American Chemical Society, Vol. 118, Issue 47
  • DOI: 10.1021/ja9628415

On the Theory of Oxidation‐Reduction Reactions Involving Electron Transfer. I
journal, May 1956

  • Marcus, R. A.
  • The Journal of Chemical Physics, Vol. 24, Issue 5
  • DOI: 10.1063/1.1742723

Nature of biological electron transfer
journal, February 1992

  • Moser, Christopher C.; Keske, Jonathan M.; Warncke, Kurt
  • Nature, Vol. 355, Issue 6363
  • DOI: 10.1038/355796a0

Biology and technology for photochemical fuel production
journal, January 2009

  • Hambourger, Michael; Moore, Gary F.; Kramer, David M.
  • Chem. Soc. Rev., Vol. 38, Issue 1
  • DOI: 10.1039/B800582F

Spectral Characteristics and Photosensitization of TiO 2 Nanoparticles in Reverse Micelles by Perylenes
journal, November 2012

  • Hernández, Laura I.; Godin, Robert; Bergkamp, Jesse J.
  • The Journal of Physical Chemistry B, Vol. 117, Issue 16
  • DOI: 10.1021/jp3086792

Molecular mimicry of photosynthetic energy and electron transfer
journal, April 1993

  • Gust, Devens; Moore, Thomas A.; Moore, Ana L.
  • Accounts of Chemical Research, Vol. 26, Issue 4
  • DOI: 10.1021/ar00028a010

Efficient intramolecular quenching and electron transfer in tetraphenylporphyrin attached with benzoquinone or hydroquinone as a photosystem model
journal, January 1979


Charge separation in carotenoporphyrin-quinone triads: synthetic, conformational, and fluorescence lifetime studies
journal, February 1987

  • Gust, Devens; Moore, Thomas A.; Liddell, Paul A.
  • Journal of the American Chemical Society, Vol. 109, Issue 3
  • DOI: 10.1021/ja00237a035

Photoinitiated charge separation in a carotenoid-porphyrin-diquinone tetrad: enhanced quantum yields via multistep electron transfers
journal, January 1988

  • Gust, Devens.; Moore, Thomas A.; Moore, Ana L.
  • Journal of the American Chemical Society, Vol. 110, Issue 1
  • DOI: 10.1021/ja00209a068

Conversion of light energy to proton potential in liposomes by artificial photosynthetic reaction centres
journal, January 1997

  • Steinberg-Yfrach, Gali; Liddell, Paul A.; Hung, Su-Chun
  • Nature, Vol. 385, Issue 6613
  • DOI: 10.1038/385239a0

Energy and Photoinduced Electron Transfer in a Wheel-Shaped Artificial Photosynthetic Antenna-Reaction Center Complex
journal, February 2006

  • Kodis, Gerdenis; Terazono, Yuichi; Liddell, Paul A.
  • Journal of the American Chemical Society, Vol. 128, Issue 6
  • DOI: 10.1021/ja055903c

Energy Transfer, Excited-State Deactivation, and Exciplex Formation in Artificial Caroteno-Phthalocyanine Light-Harvesting Antennas
journal, June 2007

  • Berera, Rudi; van Stokkum, Ivo H. M.; Kodis, Gerdenis
  • The Journal of Physical Chemistry B, Vol. 111, Issue 24
  • DOI: 10.1021/jp071010q

Light-driven production of ATP catalysed by F0F1-ATP synthase in an artificial photosynthetic membrane
journal, April 1998

  • Steinberg-Yfrach, Gali; Rigaud, Jean-Louis; Durantini, Edgardo N.
  • Nature, Vol. 392, Issue 6675
  • DOI: 10.1038/33116

A carotenoid-diporphyrin-quinone model for photosynthetic multistep electron and energy transfer
journal, October 1988

  • Gust, Devens.; Moore, Thomas A.; Moore, Ana L.
  • Journal of the American Chemical Society, Vol. 110, Issue 22
  • DOI: 10.1021/ja00230a064

Interplay of Orbital Tuning and Linker Location in Controlling Electronic Communication in Porphyrin Arrays
journal, April 1999

  • Yang, Sung Ik; Seth, Jyoti; Balasubramanian, Thiagarajan
  • Journal of the American Chemical Society, Vol. 121, Issue 16
  • DOI: 10.1021/ja9842060

Ultrafast Dynamics of Carotenoid Excited States−From Solution to Natural and Artificial Systems
journal, April 2004

  • Polívka, Tomáš; Sundström, Villy
  • Chemical Reviews, Vol. 104, Issue 4
  • DOI: 10.1021/cr020674n

Photoinduced Electron Transfer in Carotenoporphyrin−Fullerene Triads:  Temperature and Solvent Effects
journal, May 2000

  • Kuciauskas, Darius; Liddell, Paul A.; Lin, Su
  • The Journal of Physical Chemistry B, Vol. 104, Issue 18
  • DOI: 10.1021/jp9935135

Active transport of Ca2+ by an artificial photosynthetic membrane
journal, November 2002

  • Bennett, Ira M.; Farfano, Hebe M. Vanegas; Bogani, Federica
  • Nature, Vol. 420, Issue 6914
  • DOI: 10.1038/nature01209

Photoinjection of High Potential Holes into Cu 5 Ta 11 O 30 Nanoparticles by Porphyrin Dyes
journal, September 2015

  • Sullivan, Ian; Brown, Chelsea L.; Llansola-Portoles, Manuel J.
  • The Journal of Physical Chemistry C, Vol. 119, Issue 37
  • DOI: 10.1021/acs.jpcc.5b02174

Multiantenna Artificial Photosynthetic Reaction Center Complex
journal, May 2009

  • Terazono, Yuichi; Kodis, Gerdenis; Liddell, Paul A.
  • The Journal of Physical Chemistry B, Vol. 113, Issue 20
  • DOI: 10.1021/jp900835s

An Artificial Photosynthetic Antenna-Reaction Center Complex
journal, September 1999

  • Kuciauskas, Darius; Liddell, Paul A.; Lin, Su
  • Journal of the American Chemical Society, Vol. 121, Issue 37
  • DOI: 10.1021/ja991255j

Comparing Photosynthetic and Photovoltaic Efficiencies and Recognizing the Potential for Improvement
journal, May 2011

  • Blankenship, R. E.; Tiede, D. M.; Barber, J.
  • Science, Vol. 332, Issue 6031, p. 805-809
  • DOI: 10.1126/science.1200165

Solar Fuels via Artificial Photosynthesis
journal, December 2009

  • Gust, Devens; Moore, Thomas A.; Moore, Ana L.
  • Accounts of Chemical Research, Vol. 42, Issue 12
  • DOI: 10.1021/ar900209b

Ground and Excited State Electronic Properties of Halogenated Tetraarylporphyrins: Tuning the Building Blocks for Porphyrin-based Photonic Devices
journal, February 1999


High-efficiency Energy Transfer from Carotenoids to a Phthalocyanine in an Artificial Photosynthetic Antenna¶
journal, January 2002


Efficient Energy Transfer and Electron Transfer in an Artificial Photosynthetic Antenna−Reaction Center Complex
journal, March 2002

  • Kodis, Gerdenis; Liddell, Paul A.; de la Garza, Linda
  • The Journal of Physical Chemistry A, Vol. 106, Issue 10
  • DOI: 10.1021/jp012133s

NMR spectra of carotenoporphyrins. Computer-assisted conformational analysis
journal, January 1984

  • Chachaty, Claude; Gust, Devens; Moore, Thomas A.
  • Organic Magnetic Resonance, Vol. 22, Issue 1
  • DOI: 10.1002/mrc.1270220109

Mimicry of antenna and photo-protective carotenoid functions by a synthetic carotenoporphyrin
journal, March 1981

  • Bensasson, René V.; Land, Edward J.; Moore, Ana L.
  • Nature, Vol. 290, Issue 5804
  • DOI: 10.1038/290329a0

Intramolecular Long-Distance Electron Transfer in Organic Molecules
journal, April 1988


Electron transfer reactions in chemistry. Theory and experiment
journal, July 1993


Base-Catalyzed Direct Conversion of Dipyrromethanes to 1,9-Dicarbinols: A [2 + 2] Approach for Porphyrins
journal, March 2012

  • Terazono, Yuichi; North, Emily J.; Moore, Ana L.
  • Organic Letters, Vol. 14, Issue 7
  • DOI: 10.1021/ol300267j

Multiporphyrin Arrays with π–π Interchromophore Interactions
journal, December 2014

  • Terazono, Yuichi; Kodis, Gerdenis; Chachisvilis, Mirianas
  • Journal of the American Chemical Society, Vol. 137, Issue 1
  • DOI: 10.1021/ja510267c

Model Reactions for Photosynthesis—Photoinduced Charge and Energy Transfer between Covalently Linked Porphyrin and Quinone Units
journal, May 1995

  • Kurreck, Harry; Huber, Martina
  • Angewandte Chemie International Edition in English, Vol. 34, Issue 8
  • DOI: 10.1002/anie.199508491

Controlling Surface Defects and Photophysics in TiO 2 Nanoparticles
journal, August 2014

  • Llansola-Portoles, Manuel J.; Bergkamp, Jesse J.; Finkelstein-Shapiro, Daniel
  • The Journal of Physical Chemistry A, Vol. 118, Issue 45
  • DOI: 10.1021/jp506284q

Mimicking the electron transfer chain in photosystem II with a molecular triad thermodynamically capable of water oxidation
journal, May 2012

  • Megiatto, J. D.; Antoniuk-Pablant, A.; Sherman, B. D.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 39
  • DOI: 10.1073/pnas.1118348109

PREPARATION AND PHOTOPHYSICAL STUDIES OF PORPHYRIN-C 60 DYADS
journal, December 1994


Photodriven transmembrane charge separation and electron transfer by a carotenoporphyrin–quinone triad
journal, August 1985

  • Seta, Patrick; Bienvenue, Elisabeth; Moore, Ana L.
  • Nature, Vol. 316, Issue 6029
  • DOI: 10.1038/316653a0

Bacterial Photosynthesis
journal, October 1974


Pulse radiolytic and electrochemical investigations of intramolecular electron transfer in carotenoporphyrins and carotenoporphyrin-quinone triads
journal, August 1987

  • Land, Edward J.; Lexa, Doris.; Bensasson, Rene V.
  • The Journal of Physical Chemistry, Vol. 91, Issue 18
  • DOI: 10.1021/j100302a036

Driving Force and Electronic Coupling Effects on Photoinduced Electron Transfer in a Fullerene-based Molecular Triad¶
journal, January 2000


Efficient Multistep Photoinitiated Electron Transfer in a Molecular Pentad
journal, April 1990


Triplet and singlet energy transfer in carotene-porphyrin dyads: role of the linkage bonds.
journal, May 1992

  • Gust, Devens; Moore, Thomas A.; Moore, Ana L.
  • Journal of the American Chemical Society, Vol. 114, Issue 10
  • DOI: 10.1021/ja00036a002

Synthesis and photochemistry of a carotene–porphyrin–fullerene model photosynthetic reaction center
journal, August 2004

  • Kodis, Gerdenis; Liddell, Paul A.; Moore, Ana L.
  • Journal of Physical Organic Chemistry, Vol. 17, Issue 9
  • DOI: 10.1002/poc.787

Dark excited states of carotenoids: Consensus and controversy
journal, July 2009


Light Harvesting and Photoprotective Functions of Carotenoids in Compact Artificial Photosynthetic Antenna Designs
journal, January 2004

  • Kodis, Gerdenis; Herrero, Christian; Palacios, Rodrigo
  • The Journal of Physical Chemistry B, Vol. 108, Issue 1
  • DOI: 10.1021/jp036139o

Photoinduced Electron Transfer in Perylene-TiO 2 Nanoassemblies
journal, July 2013

  • Llansola-Portoles, Manuel J.; Bergkamp, Jesse J.; Tomlin, John
  • Photochemistry and Photobiology, Vol. 89, Issue 6
  • DOI: 10.1111/php.12108

Energy Transfer from Carotenoid Polyenes to Porphyrins: a Light-Harvesting Antenna
journal, November 1980


Light Absorption and Energy Transfer in Polyene-Porphyrin Esters
journal, August 1980


A bioinspired redox relay that mimics radical interactions of the Tyr–His pairs of photosystem II
journal, February 2014

  • Megiatto Jr, Jackson D.; Méndez-Hernández, Dalvin D.; Tejeda-Ferrari, Marely E.
  • Nature Chemistry, Vol. 6, Issue 5
  • DOI: 10.1038/nchem.1862

Evolution of reaction center mimics to systems capable of generating solar fuel
journal, February 2013

  • Sherman, Benjamin D.; Vaughn, Michael D.; Bergkamp, Jesse J.
  • Photosynthesis Research, Vol. 120, Issue 1-2
  • DOI: 10.1007/s11120-013-9795-4

Effects of Orbital Ordering on Electronic Communication in Multiporphyrin Arrays
journal, November 1997

  • Strachan, Jon-Paul; Gentemann, Steve; Seth, Jyoti
  • Journal of the American Chemical Society, Vol. 119, Issue 46
  • DOI: 10.1021/ja971678q

Mimicking Photosynthetic Solar Energy Transduction
journal, January 2001

  • Gust, Devens; Moore, Thomas A.; Moore, Ana L.
  • Accounts of Chemical Research, Vol. 34, Issue 1
  • DOI: 10.1021/ar9801301

Molecular Factors Controlling Photosynthetic Light Harvesting by Carotenoids
journal, August 2010

  • Polívka, Tomáš; Frank, Harry A.
  • Accounts of Chemical Research, Vol. 43, Issue 8
  • DOI: 10.1021/ar100030m

Photoinduced Charge Separation and Charge Recombination to a Triplet State in a Carotene−Porphyrin−Fullerene Triad
journal, February 1997

  • Liddell, Paul A.; Kuciauskas, Darius; Sumida, John P.
  • Journal of the American Chemical Society, Vol. 119, Issue 6
  • DOI: 10.1021/ja9631054

Photodriven charge separation in a carotenoporphyrin–quinone triad
journal, February 1984

  • Moore, Thomas A.; Gust, Devens; Mathis, Paul
  • Nature, Vol. 307, Issue 5952
  • DOI: 10.1038/307630a0

Ultrafast Energy Transfer from a Carotenoid to a Chlorin in a Simple Artificial Photosynthetic Antenna
journal, September 2002

  • Macpherson, Alisdair N.; Liddell, Paul A.; Kuciauskas, Darius
  • The Journal of Physical Chemistry B, Vol. 106, Issue 36
  • DOI: 10.1021/jp0212343

A Bioinspired Construct That Mimics the Proton Coupled Electron Transfer between P680 •+ and the Tyr Z -His190 Pair of Photosystem II
journal, August 2008

  • Moore, Gary F.; Hambourger, Michael; Gervaldo, Miguel
  • Journal of the American Chemical Society, Vol. 130, Issue 32
  • DOI: 10.1021/ja803015m