Adhesion of voids to bimetal interfaces with non-uniform energies
- Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chinese Academy of Sciences (CAS), Beijing (China)
- Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
- Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Xiamen Univ., Xiamen (China)
- Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
Interface engineering has become an important strategy for designing radiation-resistant materials. Critical to its success is fundamental understanding of the interactions between interfaces and radiation-induced defects, such as voids. Using transmission electron microscopy, here we report an interesting phenomenon in their interaction, wherein voids adhere to only one side of the bimetal interfaces rather than overlapping them. We show that this asymmetrical void-interface interaction is a consequence of differing surface energies of the two metals and non-uniformity in their interface formation energy. Specifically, voids grow within the phase of lower surface energy and wet only the high-interface energy regions. Furthermore, because this outcome cannot be accounted for by wetting of interfaces with uniform internal energy, our report provides experimental evidence that bimetal interfaces contain non-uniform internal energy distributions. Ultimately, this work also indicates that to design irradiation-resistant materials, we can avoid void-interface overlap via tuning the configurations of interfaces.
- Research Organization:
- Energy Frontier Research Centers (EFRC) (United States). Center for Materials at Irradiation and Mechanical Extremes (CMIME); Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
- Sponsoring Organization:
- USDOE Office of Science (SC), Basic Energy Sciences (BES)
- Grant/Contract Number:
- 2008LANL1026; 51401208; 2015RP18
- OSTI ID:
- 1259297
- Journal Information:
- Scientific Reports, Vol. 5; ISSN 2045-2322
- Publisher:
- Nature Publishing GroupCopyright Statement
- Country of Publication:
- United States
- Language:
- English
Web of Science
Similar Records
Elastic interactions between ''voids'' induced by solute segregation
Oxide scale adhesion and impurity segregation at the scale/metal interface