skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Antimicrobial resistance prediction in PATRIC and RAST

Abstract

The emergence and spread of antimicrobial resistance (AMR) mechanisms in bacterial pathogens, coupled with the dwindling number of effective antibiotics, has created a global health crisis. Being able to identify the genetic mechanisms of AMR and predict the resistance phenotypes of bacterial pathogens prior to culturing could inform clinical decision-making and improve reaction time. At PATRIC (http://patricbrc.org/), we have been collecting bacterial genomes with AMR metadata for several years. In order to advance phenotype prediction and the identification of genomic regions relating to AMR, we have updated the PATRIC FTP server to enable access to genomes that are binned by their AMR phenotypes, as well as metadata including minimum inhibitory concentrations. Using this infrastructure, we custom built AdaBoost (adaptive boosting) machine learning classifiers for identifying carbapenem resistance in Acinetobacter baumannii, methicillin resistance in Staphylococcus aureus, and beta-lactam and co-trimoxazole resistance in Streptococcus pneumoniae with accuracies ranging from 88–99%. We also did this for isoniazid, kanamycin, ofloxacin, rifampicin, and streptomycin resistance in Mycobacterium tuberculosis, achieving accuracies ranging from 71–88%. Lastly, this set of classifiers has been used to provide an initial framework for species-specific AMR phenotype and genomic feature prediction in the RAST and PATRIC annotation services.

Authors:
 [1];  [2];  [1];  [3];  [3];  [1];  [4];  [5];  [1];  [3];  [3];  [1];  [1]
  1. Univ. of Chicago, Chicago, IL (United States); Argonne National Lab. (ANL), Lemont, IL (United States)
  2. Gydle Inc., Chanoine Morel Quebec, QC (Canada)
  3. Biocomplexity Institute of Virginia Tech., Blacksburg, VA (United States)
  4. Argonne National Lab. (ANL), Lemont, IL (United States); The Fellowship for Interpretation of Genomes, Burr Ridge, IL (United States)
  5. Univ. of Chicago, Chicago, IL (United States)
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1258659
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Scientific Reports
Additional Journal Information:
Journal Volume: 6; Journal ID: ISSN 2045-2322
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES; adaptive boosting; genome annotation; machine learning; random forest; support vector machines; computational biology and bioinformatics; genetic databases

Citation Formats

Davis, James J., Boisvert, Sebastien, Brettin, Thomas, Kenyon, Ronald W., Mao, Chunhong, Olson, Robert, Overbeek, Ross, Santerre, John, Shukla, Maulik, Wattam, Alice R., Will, Rebecca, Xia, Fangfang, and Stevens, Rick. Antimicrobial resistance prediction in PATRIC and RAST. United States: N. p., 2016. Web. https://doi.org/10.1038/srep27930.
Davis, James J., Boisvert, Sebastien, Brettin, Thomas, Kenyon, Ronald W., Mao, Chunhong, Olson, Robert, Overbeek, Ross, Santerre, John, Shukla, Maulik, Wattam, Alice R., Will, Rebecca, Xia, Fangfang, & Stevens, Rick. Antimicrobial resistance prediction in PATRIC and RAST. United States. https://doi.org/10.1038/srep27930
Davis, James J., Boisvert, Sebastien, Brettin, Thomas, Kenyon, Ronald W., Mao, Chunhong, Olson, Robert, Overbeek, Ross, Santerre, John, Shukla, Maulik, Wattam, Alice R., Will, Rebecca, Xia, Fangfang, and Stevens, Rick. Tue . "Antimicrobial resistance prediction in PATRIC and RAST". United States. https://doi.org/10.1038/srep27930. https://www.osti.gov/servlets/purl/1258659.
@article{osti_1258659,
title = {Antimicrobial resistance prediction in PATRIC and RAST},
author = {Davis, James J. and Boisvert, Sebastien and Brettin, Thomas and Kenyon, Ronald W. and Mao, Chunhong and Olson, Robert and Overbeek, Ross and Santerre, John and Shukla, Maulik and Wattam, Alice R. and Will, Rebecca and Xia, Fangfang and Stevens, Rick},
abstractNote = {The emergence and spread of antimicrobial resistance (AMR) mechanisms in bacterial pathogens, coupled with the dwindling number of effective antibiotics, has created a global health crisis. Being able to identify the genetic mechanisms of AMR and predict the resistance phenotypes of bacterial pathogens prior to culturing could inform clinical decision-making and improve reaction time. At PATRIC (http://patricbrc.org/), we have been collecting bacterial genomes with AMR metadata for several years. In order to advance phenotype prediction and the identification of genomic regions relating to AMR, we have updated the PATRIC FTP server to enable access to genomes that are binned by their AMR phenotypes, as well as metadata including minimum inhibitory concentrations. Using this infrastructure, we custom built AdaBoost (adaptive boosting) machine learning classifiers for identifying carbapenem resistance in Acinetobacter baumannii, methicillin resistance in Staphylococcus aureus, and beta-lactam and co-trimoxazole resistance in Streptococcus pneumoniae with accuracies ranging from 88–99%. We also did this for isoniazid, kanamycin, ofloxacin, rifampicin, and streptomycin resistance in Mycobacterium tuberculosis, achieving accuracies ranging from 71–88%. Lastly, this set of classifiers has been used to provide an initial framework for species-specific AMR phenotype and genomic feature prediction in the RAST and PATRIC annotation services.},
doi = {10.1038/srep27930},
journal = {Scientific Reports},
number = ,
volume = 6,
place = {United States},
year = {2016},
month = {6}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 10 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Detection of rifampicin-resistance mutations in Mycobacterium tuberculosis
journal, March 1993


The emergence and evolution of methicillin-resistant Staphylococcus aureus
journal, October 2001


KMC 2: fast and resource-frugal k-mer counting
journal, January 2015


Molecular diagnostics of infectious diseases
journal, November 1997


An increasing threat in hospitals: multidrug-resistant Acinetobacter baumannii
journal, December 2007

  • Dijkshoorn, Lenie; Nemec, Alexandr; Seifert, Harald
  • Nature Reviews Microbiology, Vol. 5, Issue 12
  • DOI: 10.1038/nrmicro1789

Variability in Antibiotic Prescribing: An Inconvenient Truth
journal, October 2014

  • Hicks, L. A.; Blaser, M. J.
  • Journal of the Pediatric Infectious Diseases Society, Vol. 4, Issue 4
  • DOI: 10.1093/jpids/piu106

Whole-genome sequencing for prediction of Mycobacterium tuberculosis drug susceptibility and resistance: a retrospective cohort study
journal, October 2015


Real Time Metagenomics: Using k-mers to annotate metagenomes
journal, October 2012


ARDB--Antibiotic Resistance Genes Database
journal, January 2009

  • Liu, B.; Pop, M.
  • Nucleic Acids Research, Vol. 37, Issue Database
  • DOI: 10.1093/nar/gkn656

ethA, inhA, and katG Loci of Ethionamide-Resistant Clinical Mycobacterium tuberculosis Isolates
journal, December 2003


The sequence read archive: explosive growth of sequencing data
journal, October 2011

  • Kodama, Y.; Shumway, M.; Leinonen, R.
  • Nucleic Acids Research, Vol. 40, Issue D1
  • DOI: 10.1093/nar/gkr854

Trimethoprim and sulfonamide resistance
journal, February 1995

  • Huovinen, P.; Sundstrom, L.; Swedberg, G.
  • Antimicrobial Agents and Chemotherapy, Vol. 39, Issue 2
  • DOI: 10.1128/aac.39.2.279

KEGG: Kyoto Encyclopedia of Genes and Genomes
journal, January 2000

  • Kanehisa, Minoru; Goto, Susumu
  • Nucleic Acids Research, Vol. 28, Issue 1, p. 27-30
  • DOI: 10.1093/nar/28.1.27

Data, information, knowledge and principle: back to metabolism in KEGG
journal, November 2013

  • Kanehisa, Minoru; Goto, Susumu; Sato, Yoko
  • Nucleic Acids Research, Vol. 42, Issue D1
  • DOI: 10.1093/nar/gkt1076

A robust prognostic signature for hormone-positive node-negative breast cancer
journal, January 2013

  • Griffith, Obi L.; Pepin, François; Enache, Oana M.
  • Genome Medicine, Vol. 5, Issue 10
  • DOI: 10.1186/gm496

Comprehensive Identification of Single Nucleotide Polymorphisms Associated with Beta-lactam Resistance within Pneumococcal Mosaic Genes
journal, August 2014


Molecular Characterization of Multidrug Resistant Hospital Isolates Using the Antimicrobial Resistance Determinant Microarray
journal, July 2013


Ethambutol resistance in Mycobacterium tuberculosis: critical role of embB mutations.
journal, August 1997

  • Sreevatsan, S.; Stockbauer, K. E.; Pan, X.
  • Antimicrobial Agents and Chemotherapy, Vol. 41, Issue 8
  • DOI: 10.1128/aac.41.8.1677

A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting
journal, August 1997

  • Freund, Yoav; Schapire, Robert E.
  • Journal of Computer and System Sciences, Vol. 55, Issue 1
  • DOI: 10.1006/jcss.1997.1504

Evolutionary history and global spread of the Mycobacterium tuberculosis Beijing lineage
journal, January 2015

  • Merker, Matthias; Blin, Camille; Mona, Stefano
  • Nature Genetics, Vol. 47, Issue 3
  • DOI: 10.1038/ng.3195

BioProject and BioSample databases at NCBI: facilitating capture and organization of metadata
journal, December 2011

  • Barrett, T.; Clark, K.; Gevorgyan, R.
  • Nucleic Acids Research, Vol. 40, Issue D1
  • DOI: 10.1093/nar/gkr1163

Derivation of a bronchial genomic classifier for lung cancer in a prospective study of patients undergoing diagnostic bronchoscopy
journal, May 2015

  • Whitney, Duncan H.; Elashoff, Michael R.; Porta-Smith, Kate
  • BMC Medical Genomics, Vol. 8, Issue 1
  • DOI: 10.1186/s12920-015-0091-3

Population genomics of post-vaccine changes in pneumococcal epidemiology
journal, May 2013

  • Croucher, Nicholas J.; Finkelstein, Jonathan A.; Pelton, Stephen I.
  • Nature Genetics, Vol. 45, Issue 6
  • DOI: 10.1038/ng.2625

Machine learning applications in genetics and genomics
journal, May 2015

  • Libbrecht, Maxwell W.; Noble, William Stafford
  • Nature Reviews Genetics, Vol. 16, Issue 6
  • DOI: 10.1038/nrg3920

Kraken: ultrafast metagenomic sequence classification using exact alignments
journal, January 2014


The Comprehensive Antibiotic Resistance Database
journal, May 2013

  • McArthur, Andrew G.; Waglechner, Nicholas; Nizam, Fazmin
  • Antimicrobial Agents and Chemotherapy, Vol. 57, Issue 7
  • DOI: 10.1128/aac.00419-13

Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning
journal, January 2002

  • Shipp, Margaret A.; Ross, Ken N.; Tamayo, Pablo
  • Nature Medicine, Vol. 8, Issue 1
  • DOI: 10.1038/nm0102-68

Resistance to Antibiotics: Are We in the Post-Antibiotic Era?
journal, November 2005


Streptomycin resistance in mycobacteria.
journal, February 1994

  • Honore, N.; Cole, S. T.
  • Antimicrobial Agents and Chemotherapy, Vol. 38, Issue 2
  • DOI: 10.1128/aac.38.2.238

PATRIC: the Comprehensive Bacterial Bioinformatics Resource with a Focus on Human Pathogenic Species
journal, September 2011

  • Gillespie, Joseph J.; Wattam, Alice R.; Cammer, Stephen A.
  • Infection and Immunity, Vol. 79, Issue 11
  • DOI: 10.1128/iai.00207-11

Carbapenem resistance in Acinetobacter baumannii: mechanisms and epidemiology
journal, September 2006


mecA Gene Is Widely Disseminated in Staphylococcus aureus Population
journal, November 2002


Dense genomic sampling identifies highways of pneumococcal recombination
journal, February 2014

  • Chewapreecha, Claire; Harris, Simon R.; Croucher, Nicholas J.
  • Nature Genetics, Vol. 46, Issue 3
  • DOI: 10.1038/ng.2895

Predicting antimicrobial susceptibilities for Escherichia coli and Klebsiella pneumoniae isolates using whole genomic sequence data
journal, May 2013

  • Stoesser, N.; Batty, E. M.; Eyre, D. W.
  • Journal of Antimicrobial Chemotherapy, Vol. 68, Issue 10
  • DOI: 10.1093/jac/dkt180

SRST2: Rapid genomic surveillance for public health and hospital microbiology labs
journal, November 2014


Molecular mechanisms of antibiotic resistance
journal, December 2014

  • Blair, Jessica M. A.; Webber, Mark A.; Baylay, Alison J.
  • Nature Reviews Microbiology, Vol. 13, Issue 1
  • DOI: 10.1038/nrmicro3380

PATRIC, the bacterial bioinformatics database and analysis resource
journal, November 2013

  • Wattam, Alice R.; Abraham, David; Dalay, Oral
  • Nucleic Acids Research, Vol. 42, Issue D1
  • DOI: 10.1093/nar/gkt1099

Missense mutations in the catalase-peroxidase gene, katG, are associated with isoniazid resistance in Mycobacterium tuberculosis
journal, January 1995


BLAST+: architecture and applications
journal, January 2009

  • Camacho, Christiam; Coulouris, George; Avagyan, Vahram
  • BMC Bioinformatics, Vol. 10, Issue 1
  • DOI: 10.1186/1471-2105-10-421

Variation in Antibiotic Prescribing Across a Pediatric Primary Care Network
journal, October 2014

  • Gerber, J. S.; Prasad, P. A.; Russell Localio, A.
  • Journal of the Pediatric Infectious Diseases Society, Vol. 4, Issue 4
  • DOI: 10.1093/jpids/piu086

RASTtk: A modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes
journal, February 2015

  • Brettin, Thomas; Davis, James J.; Disz, Terry
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep08365

Detection of Kanamycin-ResistantMycobacterium tuberculosis by Identifying Mutations in the 16S rRNA Gene
journal, January 1998


Random Forests
journal, January 2001


Rapid antibiotic-resistance predictions from genome sequence data for Staphylococcus aureus and Mycobacterium tuberculosis
journal, December 2015

  • Bradley, Phelim; Gordon, N. Claire; Walker, Timothy M.
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms10063

The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST)
journal, November 2013

  • Overbeek, Ross; Olson, Robert; Pusch, Gordon D.
  • Nucleic Acids Research, Vol. 42, Issue D1
  • DOI: 10.1093/nar/gkt1226

Prediction of Staphylococcus aureus Antimicrobial Resistance by Whole-Genome Sequencing
journal, February 2014

  • Gordon, N. C.; Price, J. R.; Cole, K.
  • Journal of Clinical Microbiology, Vol. 52, Issue 4
  • DOI: 10.1128/jcm.03117-13

Multi-class AdaBoost
journal, January 2009


A new antibiotic kills pathogens without detectable resistance
journal, January 2015

  • Ling, Losee L.; Schneider, Tanja; Peoples, Aaron J.
  • Nature, Vol. 517, Issue 7535
  • DOI: 10.1038/nature14098

Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study
journal, February 2016


Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study
journal, September 2010

  • Kumarasamy, Karthikeyan K.; Toleman, Mark A.; Walsh, Timothy R.
  • The Lancet Infectious Diseases, Vol. 10, Issue 9
  • DOI: 10.1016/s1473-3099(10)70143-2

GenBank
journal, November 2014

  • Benson, Dennis A.; Clark, Karen; Karsch-Mizrachi, Ilene
  • Nucleic Acids Research, Vol. 43, Issue D1
  • DOI: 10.1093/nar/gku1216

Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study
journal, September 2010

  • Kumarasamy, Karthikeyan K.; Toleman, Mark A.; Walsh, Timothy R.
  • The Lancet Infectious Diseases, Vol. 10, Issue 9
  • DOI: 10.1016/S1473-3099(10)70143-2

Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study
journal, February 2016


Prediction of Staphylococcus aureus Antimicrobial Resistance by Whole-Genome Sequencing
journal, February 2014

  • Gordon, N. C.; Price, J. R.; Cole, K.
  • Journal of Clinical Microbiology, Vol. 52, Issue 4
  • DOI: 10.1128/JCM.03117-13

Whole-genome sequencing for prediction of Mycobacterium tuberculosis drug susceptibility and resistance: a retrospective cohort study
journal, October 2015


The emergence and evolution of methicillin-resistant Staphylococcus aureus
journal, October 2001


PATRIC: the Comprehensive Bacterial Bioinformatics Resource with a Focus on Human Pathogenic Species
journal, September 2011

  • Gillespie, Joseph J.; Wattam, Alice R.; Cammer, Stephen A.
  • Infection and Immunity, Vol. 79, Issue 11
  • DOI: 10.1128/IAI.00207-11

Multi-class AdaBoost
journal, January 2009


The Comprehensive Antibiotic Resistance Database
journal, May 2013

  • McArthur, Andrew G.; Waglechner, Nicholas; Nizam, Fazmin
  • Antimicrobial Agents and Chemotherapy, Vol. 57, Issue 7
  • DOI: 10.1128/AAC.00419-13

Random Forests
journal, January 2001


mecA Gene Is Widely Disseminated in Staphylococcus aureus Population
journal, November 2002


Trimethoprim and sulfonamide resistance
journal, February 1995

  • Huovinen, P.; Sundstrom, L.; Swedberg, G.
  • Antimicrobial Agents and Chemotherapy, Vol. 39, Issue 2
  • DOI: 10.1128/AAC.39.2.279

Detection of rifampicin-resistance mutations in Mycobacterium tuberculosis
journal, March 1993


Streptomycin resistance in mycobacteria.
journal, February 1994

  • Honore, N.; Cole, S. T.
  • Antimicrobial Agents and Chemotherapy, Vol. 38, Issue 2
  • DOI: 10.1128/AAC.38.2.238

Ethambutol resistance in Mycobacterium tuberculosis: critical role of embB mutations.
journal, August 1997

  • Sreevatsan, S.; Stockbauer, K. E.; Pan, X.
  • Antimicrobial Agents and Chemotherapy, Vol. 41, Issue 8
  • DOI: 10.1128/AAC.41.8.1677

ethA, inhA, and katG Loci of Ethionamide-Resistant Clinical Mycobacterium tuberculosis Isolates
journal, December 2003


Coriander Genomics Database: a genomic, transcriptomic, and metabolic database for coriander
journal, April 2020


Using eye movements to detect visual field loss: a pragmatic assessment using simulated scotoma
journal, June 2020


Circuit Depth Reduction for Gate-Model Quantum Computers
journal, July 2020


miRNALoc: predicting miRNA subcellular localizations based on principal component scores of physico-chemical properties and pseudo compositions of di-nucleotides
journal, September 2020

  • Meher, Prabina Kumar; Satpathy, Subhrajit; Rao, Atmakuri Ramakrishna
  • Scientific Reports, Vol. 10, Issue 1
  • DOI: 10.1038/s41598-020-71381-4

Comprehensive identification of single nucleotide polymorphisms associated with beta-lactam resistance within pneumococcal mosaic genes.
text, January 2014

  • Chewapreecha, Claire; Marttinen, Pekka; Croucher, Nicholas J.
  • Apollo - University of Cambridge Repository
  • DOI: 10.17863/cam.41107

Evolutionary history and global spread of the Mycobacterium tuberculosis Beijing lineage.
text, January 2015

  • Blum, Michael G. B.; Blin, Camille; Drobniewski, Francis
  • Nature America
  • DOI: 10.7892/boris.78704

    Works referencing / citing this record:

    Antibiotic resistance prediction for Mycobacterium tuberculosis from genome sequence data with Mykrobe
    journal, January 2019


    Improvements to PATRIC, the all-bacterial Bioinformatics Database and Analysis Resource Center
    journal, November 2016

    • Wattam, Alice R.; Davis, James J.; Assaf, Rida
    • Nucleic Acids Research, Vol. 45, Issue D1
    • DOI: 10.1093/nar/gkw1017

    Developing an in silico minimum inhibitory concentration panel test for Klebsiella pneumoniae
    journal, January 2018


    Capreomycin resistance prediction in two species of Mycobacterium using a stacked ensemble method
    journal, June 2019

    • Chowdhury, A. S.; Khaledian, E.; Broschat, S. L.
    • Journal of Applied Microbiology, Vol. 127, Issue 6
    • DOI: 10.1111/jam.14413

    Big Data’s Role in Precision Public Health
    journal, March 2018


    DeepARG: a deep learning approach for predicting antibiotic resistance genes from metagenomic data
    journal, February 2018


    Machine learning and structural analysis of Mycobacterium tuberculosis pan-genome identifies genetic signatures of antibiotic resistance
    journal, October 2018


    Data integration and predictive modeling methods for multi-omics datasets
    journal, January 2018

    • Kim, Minseung; Tagkopoulos, Ilias
    • Molecular Omics, Vol. 14, Issue 1
    • DOI: 10.1039/c7mo00051k

    Genome-Based Prediction of Bacterial Antibiotic Resistance
    journal, October 2018

    • Su, Michelle; Satola, Sarah W.; Read, Timothy D.
    • Journal of Clinical Microbiology, Vol. 57, Issue 3
    • DOI: 10.1128/jcm.01405-18

    Evaluation of parameters affecting performance and reliability of machine learning-based antibiotic susceptibility testing from whole genome sequencing data
    journal, September 2019


    PATRIC as a unique resource for studying antimicrobial resistance
    journal, July 2017

    • Antonopoulos, Dionysios A.; Assaf, Rida; Aziz, Ramy Karam
    • Briefings in Bioinformatics, Vol. 20, Issue 4
    • DOI: 10.1093/bib/bbx083

    Genome Sequences of Penicillin-Resistant Bacillus anthracis Strains
    journal, January 2019

    • Gargis, Amy S.; Lascols, Christine; McLaughlin, Heather P.
    • Microbiology Resource Announcements, Vol. 8, Issue 2
    • DOI: 10.1128/mra.01122-18

    Sequencing-based methods and resources to study antimicrobial resistance
    journal, March 2019


    Prediction of Acquired Antimicrobial Resistance for Multiple Bacterial Species Using Neural Networks
    journal, January 2020


    A fast and agnostic method for bacterial genome-wide association studies: Bridging the gap between k-mers and genetic events
    journal, November 2018


    Automatic infection detection based on electronic medical records
    journal, April 2018


    Machine Learning Approaches for Epidemiological Investigations of Food-Borne Disease Outbreaks
    journal, August 2019

    • Vilne, Baiba; Meistere, Irēna; Grantiņa-Ieviņa, Lelde
    • Frontiers in Microbiology, Vol. 10
    • DOI: 10.3389/fmicb.2019.01722

    Predicting bacterial resistance from whole-genome sequences using k-mers and stability selection
    journal, October 2018


    Identification of Primary Antimicrobial Resistance Drivers in Agricultural Nontyphoidal Salmonella enterica Serovars by Using Machine Learning
    journal, August 2019


    Evaluation of a fully automated bioinformatics tool to predict antibiotic resistance from MRSA genomes
    journal, February 2020

    • Kumar, Narender; Raven, Kathy E.; Blane, Beth
    • Journal of Antimicrobial Chemotherapy, Vol. 75, Issue 5
    • DOI: 10.1093/jac/dkz570

    Microbial genomics and antimicrobial susceptibility testing
    journal, January 2017

    • Dunne Jr, W. Michael; Jaillard, Magali; Rochas, Olivier
    • Expert Review of Molecular Diagnostics, Vol. 17, Issue 3
    • DOI: 10.1080/14737159.2017.1283220

    Antimicrobial resistance genetic factor identification from whole-genome sequence data using deep feature selection
    journal, December 2019


    A guide to machine learning for bacterial host attribution using genome sequence data
    journal, December 2019

    • Lupolova, Nadejda; Lycett, Samantha J.; Gally, David L.
    • Microbial Genomics, Vol. 5, Issue 12
    • DOI: 10.1099/mgen.0.000317

    Genomic epidemiology of multidrug-resistant Gram-negative organisms: Translational genomics of resistant Gram-negatives
    journal, March 2018

    • Hawken, Shawn E.; Snitkin, Evan S.
    • Annals of the New York Academy of Sciences, Vol. 1435, Issue 1
    • DOI: 10.1111/nyas.13672

    Analysis of Whole-Genome Sequences for the Prediction of Penicillin Resistance and β-Lactamase Activity in Bacillus anthracis
    journal, December 2018


    Challenges and opportunities for whole-genome sequencing-based surveillance of antibiotic resistance: Genome sequencing and resistance surveillance
    journal, January 2017

    • Schürch, Anita C.; van Schaik, Willem
    • Annals of the New York Academy of Sciences, Vol. 1388, Issue 1
    • DOI: 10.1111/nyas.13310

    Using Machine Learning To Predict Antimicrobial MICs and Associated Genomic Features for Nontyphoidal Salmonella
    journal, October 2018

    • Nguyen, Marcus; Long, S. Wesley; McDermott, Patrick F.
    • Journal of Clinical Microbiology, Vol. 57, Issue 2
    • DOI: 10.1128/jcm.01260-18

    proGenomes: a resource for consistent functional and taxonomic annotations of prokaryotic genomes
    journal, October 2016

    • Mende, Daniel R.; Letunic, Ivica; Huerta-Cepas, Jaime
    • Nucleic Acids Research, Vol. 45, Issue D1
    • DOI: 10.1093/nar/gkw989

    Evaluation of a fully automated bioinformatics tool to predict antibiotic resistance from MRSA genomes.
    text, January 2020

    • Kumar, Narender; Raven, Kathy E.; Blane, Beth
    • Apollo - University of Cambridge Repository
    • DOI: 10.17863/cam.47622

    VAMPr: VAriant Mapping and Prediction of antibiotic resistance via explainable features and machine learning
    journal, January 2020