skip to main content

DOE PAGESDOE PAGES

Title: Uncertainty analysis of signal deconvolution using a measured instrument response function

A common analysis procedure minimizes the ln-likelihood that a set of experimental observables matches a parameterized model of the observation. The model includes a description of the underlying physical process as well as the instrument response function (IRF). Here, we investigate the National Ignition Facility (NIF) neutron time-of-flight (nTOF) spectrometers, the IRF is constructed from measurements and models. IRF measurements have a finite precision that can make significant contributions to the uncertainty estimate of the physical model’s parameters. Finally, we apply a Bayesian analysis to properly account for IRF uncertainties in calculating the ln-likelihood function used to find the optimum physical parameters.
Authors:
ORCiD logo [1] ;  [1] ;  [1] ; ORCiD logo [1] ;  [1] ;  [1] ;  [1] ;  [1] ; ORCiD logo [1] ; ORCiD logo [1] ;  [1]
  1. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Publication Date:
Report Number(s):
LLNL-PROC-694045
Journal ID: ISSN 0034-6748; RSINAK
Grant/Contract Number:
AC52-07NA27344
Type:
Accepted Manuscript
Journal Name:
Review of Scientific Instruments
Additional Journal Information:
Journal Volume: 87; Journal Issue: 11; Conference: Presented at: 21st Topical Conference on High-Temperature Plasma Diagnostics, Madison, WI, United States, Jun 05 - Jun 09, 2016; Journal ID: ISSN 0034-6748
Publisher:
American Institute of Physics (AIP)
Research Org:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org:
USDOE
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; spectrum analysis; neutrons; probability theory; error analysis; ion scattering
OSTI Identifier:
1258534

Hartouni, E. P., Beeman, B., Caggiano, J. A., Cerjan, C., Eckart, M. J., Grim, G. P., Hatarik, R., Moore, A. S., Munro, D. H., Phillips, T., and Sayre, D. B.. Uncertainty analysis of signal deconvolution using a measured instrument response function. United States: N. p., Web. doi:10.1063/1.4963867.
Hartouni, E. P., Beeman, B., Caggiano, J. A., Cerjan, C., Eckart, M. J., Grim, G. P., Hatarik, R., Moore, A. S., Munro, D. H., Phillips, T., & Sayre, D. B.. Uncertainty analysis of signal deconvolution using a measured instrument response function. United States. doi:10.1063/1.4963867.
Hartouni, E. P., Beeman, B., Caggiano, J. A., Cerjan, C., Eckart, M. J., Grim, G. P., Hatarik, R., Moore, A. S., Munro, D. H., Phillips, T., and Sayre, D. B.. 2016. "Uncertainty analysis of signal deconvolution using a measured instrument response function". United States. doi:10.1063/1.4963867. https://www.osti.gov/servlets/purl/1258534.
@article{osti_1258534,
title = {Uncertainty analysis of signal deconvolution using a measured instrument response function},
author = {Hartouni, E. P. and Beeman, B. and Caggiano, J. A. and Cerjan, C. and Eckart, M. J. and Grim, G. P. and Hatarik, R. and Moore, A. S. and Munro, D. H. and Phillips, T. and Sayre, D. B.},
abstractNote = {A common analysis procedure minimizes the ln-likelihood that a set of experimental observables matches a parameterized model of the observation. The model includes a description of the underlying physical process as well as the instrument response function (IRF). Here, we investigate the National Ignition Facility (NIF) neutron time-of-flight (nTOF) spectrometers, the IRF is constructed from measurements and models. IRF measurements have a finite precision that can make significant contributions to the uncertainty estimate of the physical model’s parameters. Finally, we apply a Bayesian analysis to properly account for IRF uncertainties in calculating the ln-likelihood function used to find the optimum physical parameters.},
doi = {10.1063/1.4963867},
journal = {Review of Scientific Instruments},
number = 11,
volume = 87,
place = {United States},
year = {2016},
month = {10}
}