Uncertainty analysis of signal deconvolution using a measured instrument response function
A common analysis procedure minimizes the lnlikelihood that a set of experimental observables matches a parameterized model of the observation. The model includes a description of the underlying physical process as well as the instrument response function (IRF). Here, we investigate the National Ignition Facility (NIF) neutron timeofflight (nTOF) spectrometers, the IRF is constructed from measurements and models. IRF measurements have a finite precision that can make significant contributions to the uncertainty estimate of the physical model’s parameters. Finally, we apply a Bayesian analysis to properly account for IRF uncertainties in calculating the lnlikelihood function used to find the optimum physical parameters.
 Authors:

^{[1]}
;
^{[1]};
^{[1]};
^{[1]}
;
^{[1]};
^{[1]};
^{[1]};
^{[1]};
^{[1]}
;
^{[1]}
;
^{[1]}
 Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
 Publication Date:
 Report Number(s):
 LLNLPROC694045
Journal ID: ISSN 00346748; RSINAK
 Grant/Contract Number:
 AC5207NA27344
 Type:
 Accepted Manuscript
 Journal Name:
 Review of Scientific Instruments
 Additional Journal Information:
 Journal Volume: 87; Journal Issue: 11; Conference: Presented at: 21st Topical Conference on HighTemperature Plasma Diagnostics, Madison, WI, United States, Jun 05  Jun 09, 2016; Journal ID: ISSN 00346748
 Publisher:
 American Institute of Physics (AIP)
 Research Org:
 Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
 Sponsoring Org:
 USDOE
 Country of Publication:
 United States
 Language:
 English
 Subject:
 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; spectrum analysis; neutrons; probability theory; error analysis; ion scattering
 OSTI Identifier:
 1258534
Hartouni, E. P., Beeman, B., Caggiano, J. A., Cerjan, C., Eckart, M. J., Grim, G. P., Hatarik, R., Moore, A. S., Munro, D. H., Phillips, T., and Sayre, D. B.. Uncertainty analysis of signal deconvolution using a measured instrument response function. United States: N. p.,
Web. doi:10.1063/1.4963867.
Hartouni, E. P., Beeman, B., Caggiano, J. A., Cerjan, C., Eckart, M. J., Grim, G. P., Hatarik, R., Moore, A. S., Munro, D. H., Phillips, T., & Sayre, D. B.. Uncertainty analysis of signal deconvolution using a measured instrument response function. United States. doi:10.1063/1.4963867.
Hartouni, E. P., Beeman, B., Caggiano, J. A., Cerjan, C., Eckart, M. J., Grim, G. P., Hatarik, R., Moore, A. S., Munro, D. H., Phillips, T., and Sayre, D. B.. 2016.
"Uncertainty analysis of signal deconvolution using a measured instrument response function". United States.
doi:10.1063/1.4963867. https://www.osti.gov/servlets/purl/1258534.
@article{osti_1258534,
title = {Uncertainty analysis of signal deconvolution using a measured instrument response function},
author = {Hartouni, E. P. and Beeman, B. and Caggiano, J. A. and Cerjan, C. and Eckart, M. J. and Grim, G. P. and Hatarik, R. and Moore, A. S. and Munro, D. H. and Phillips, T. and Sayre, D. B.},
abstractNote = {A common analysis procedure minimizes the lnlikelihood that a set of experimental observables matches a parameterized model of the observation. The model includes a description of the underlying physical process as well as the instrument response function (IRF). Here, we investigate the National Ignition Facility (NIF) neutron timeofflight (nTOF) spectrometers, the IRF is constructed from measurements and models. IRF measurements have a finite precision that can make significant contributions to the uncertainty estimate of the physical model’s parameters. Finally, we apply a Bayesian analysis to properly account for IRF uncertainties in calculating the lnlikelihood function used to find the optimum physical parameters.},
doi = {10.1063/1.4963867},
journal = {Review of Scientific Instruments},
number = 11,
volume = 87,
place = {United States},
year = {2016},
month = {10}
}