skip to main content

DOE PAGESDOE PAGES

Title: Contributions of phase, sulfur vacancies, and edges to the hydrogen evolution reaction catalytic activity of porous molybdenum disulfide nanosheets

Molybdenum disulfide (MoS 2) is a promising nonprecious catalyst for the hydrogen evolution reaction (HER) that has been extensively studied due to its excellent performance, but the lack of understanding of the factors that impact its catalytic activity hinders further design and enhancement of MoS 2-based electrocatalysts. Here, by using novel porous (holey) metallic 1T phase MoS 2 nanosheets synthesized by a liquid-ammonia-assisted lithiation route, we systematically investigated the contributions of crystal structure (phase), edges, and sulfur vacancies (S-vacancies) to the catalytic activity toward HER from five representative MoS 2 nanosheet samples, including 2H and 1T phase, porous 2H and 1T phase, and sulfur-compensated porous 2H phase. Superior HER catalytic activity was achieved in the porous 1T phase MoS 2 nanosheets that have even more edges and S-vacancies than conventional 1T phase MoS 2. A comparative study revealed that the phase serves as the key role in determining the HER performance, as 1T phase MoS 2 always outperforms the corresponding 2H phase MoS 2 samples, and that both edges and S-vacancies also contribute significantly to the catalytic activity in porous MoS 2 samples. Then, using combined defect characterization techniques of electron spin resonance spectroscopy and positron annihilation lifetime spectroscopy tomore » quantify the S-vacancies, the contributions of each factor were individually elucidated. Furthermore, this study presents new insights and opens up new avenues for designing electrocatalysts based on MoS 2 or other layered materials with enhanced HER performance.« less
Authors:
 [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [2] ;  [1] ;  [1] ;  [3] ;  [4] ;  [4] ;  [1] ;  [2]
  1. Harbin Institute of Technology, Harbin (China)
  2. Univ. of Wisconsin-Madison, Madison, WI (United States)
  3. Dalian Jiaotong Univ., Dalian (China)
  4. Chinese Academy of Sciences (CAS), Beijing (China)
Publication Date:
Grant/Contract Number:
FG02-09ER46664; SC0002162
Type:
Published Article
Journal Name:
Journal of the American Chemical Society
Additional Journal Information:
Journal Volume: 138; Journal Issue: 25; Journal ID: ISSN 0002-7863
Publisher:
American Chemical Society (ACS)
Research Org:
Univ. of Wisconsin-Madison, Madison, WI (United States)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
OSTI Identifier:
1258504
Alternate Identifier(s):
OSTI ID: 1260963