skip to main content

DOE PAGESDOE PAGES

Title: Electrode-stress-induced nanoscale disorder in Si quantum electronic devices

Disorder in the potential-energy landscape presents a major obstacle to the more rapid development of semiconductor quantum device technologies. We report a large-magnitude source of disorder, beyond commonly considered unintentional background doping or fixed charge in oxide layers: nanoscale strain fields induced by residual stresses in nanopatterned metal gates. Quantitative analysis of synchrotron coherent hard x-ray nanobeam diffraction patterns reveals gate-induced curvature and strains up to 0.03% in a buried Si quantum well within a Si/SiGe heterostructure. Furthermore, electrode stress presents both challenges to the design of devices and opportunities associated with the lateral manipulation of electronic energy levels.
Authors:
 [1] ;  [1] ;  [1] ;  [1] ;  [1] ; ORCiD logo [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [2] ; ORCiD logo [1]
  1. Univ. of Wisconsin, Madison, WI (United States)
  2. Argonne National Lab. (ANL), Argonne, IL (United States)
Publication Date:
Grant/Contract Number:
FG02-04ER46147; FG02‐03ER46028; AC02-06CH11357; DE‐FG02‐03ER46028
Type:
Published Article
Journal Name:
APL Materials
Additional Journal Information:
Journal Volume: 4; Journal Issue: 6; Journal ID: ISSN 2166-532X
Publisher:
American Institute of Physics (AIP)
Research Org:
Univ. of Wisconsin, Madison, WI (United States)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; electrodes; quantum wells; x-ray diffraction; heterojunctions; quantum dots; 77 NANOSCIENCE AND NANOTECHNOLOGY; 75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
OSTI Identifier:
1258327
Alternate Identifier(s):
OSTI ID: 1306380; OSTI ID: 1356353; OSTI ID: 1420555

Park, J., Ahn, Y., Tilka, J. A., Sampson, K. C., Savage, D. E., Prance, J. R., Simmons, C. B., Lagally, M. G., Coppersmith, S. N., Eriksson, M. A., Holt, M. V., and Evans, P. G.. Electrode-stress-induced nanoscale disorder in Si quantum electronic devices. United States: N. p., Web. doi:10.1063/1.4954054.
Park, J., Ahn, Y., Tilka, J. A., Sampson, K. C., Savage, D. E., Prance, J. R., Simmons, C. B., Lagally, M. G., Coppersmith, S. N., Eriksson, M. A., Holt, M. V., & Evans, P. G.. Electrode-stress-induced nanoscale disorder in Si quantum electronic devices. United States. doi:10.1063/1.4954054.
Park, J., Ahn, Y., Tilka, J. A., Sampson, K. C., Savage, D. E., Prance, J. R., Simmons, C. B., Lagally, M. G., Coppersmith, S. N., Eriksson, M. A., Holt, M. V., and Evans, P. G.. 2016. "Electrode-stress-induced nanoscale disorder in Si quantum electronic devices". United States. doi:10.1063/1.4954054.
@article{osti_1258327,
title = {Electrode-stress-induced nanoscale disorder in Si quantum electronic devices},
author = {Park, J. and Ahn, Y. and Tilka, J. A. and Sampson, K. C. and Savage, D. E. and Prance, J. R. and Simmons, C. B. and Lagally, M. G. and Coppersmith, S. N. and Eriksson, M. A. and Holt, M. V. and Evans, P. G.},
abstractNote = {Disorder in the potential-energy landscape presents a major obstacle to the more rapid development of semiconductor quantum device technologies. We report a large-magnitude source of disorder, beyond commonly considered unintentional background doping or fixed charge in oxide layers: nanoscale strain fields induced by residual stresses in nanopatterned metal gates. Quantitative analysis of synchrotron coherent hard x-ray nanobeam diffraction patterns reveals gate-induced curvature and strains up to 0.03% in a buried Si quantum well within a Si/SiGe heterostructure. Furthermore, electrode stress presents both challenges to the design of devices and opportunities associated with the lateral manipulation of electronic energy levels.},
doi = {10.1063/1.4954054},
journal = {APL Materials},
number = 6,
volume = 4,
place = {United States},
year = {2016},
month = {6}
}