skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Organic and inorganic decomposition products from the thermal desorption of atmospheric particles

Abstract

Here, atmospheric aerosol composition is often analyzed using thermal desorption techniques to evaporate samples and deliver organic or inorganic molecules to various designs of detectors for identification and quantification. The organic aerosol (OA) fraction is composed of thousands of individual compounds, some with nitrogen- and sulfur-containing functionality and, often contains oligomeric material, much of which may be susceptible to decomposition upon heating. Here we analyze thermal decomposition products as measured by a thermal desorption aerosol gas chromatograph (TAG) capable of separating thermal decomposition products from thermally stable molecules. The TAG impacts particles onto a collection and thermal desorption (CTD) cell, and upon completion of sample collection, heats and transfers the sample in a helium flow up to 310 °C. Desorbed molecules are refocused at the head of a gas chromatography column that is held at 45 °C and any volatile decomposition products pass directly through the column and into an electron impact quadrupole mass spectrometer. Analysis of the sample introduction (thermal decomposition) period reveals contributions of NO+ (m/z 30), NO2+ (m/z 46), SO+ (m/z 48), and SO2+ (m/z 64), derived from either inorganic or organic particle-phase nitrate and sulfate. CO2+ (m/z 44) makes up a major component of the decomposition signal, along withmore » smaller contributions from other organic components that vary with the type of aerosol contributing to the signal (e.g., m/z 53, 82 observed here for isoprene-derived secondary OA). All of these ions are important for ambient aerosol analyzed with the aerosol mass spectrometer (AMS), suggesting similarity of the thermal desorption processes in both instruments. Ambient observations of these decomposition products compared to organic, nitrate, and sulfate mass concentrations measured by an AMS reveal good correlation, with improved correlations for OA when compared to the AMS oxygenated OA (OOA) component. TAG signal found in the traditional compound elution time period reveals higher correlations with AMS hydrocarbon-like OA (HOA) combined with the fraction of OOA that is less oxygenated. Potential to quantify nitrate and sulfate aerosol mass concentrations using the TAG system is explored through analysis of ammonium sulfate and ammonium nitrate standards. While chemical standards display a linear response in the TAG system, redesorptions of the CTD cell following ambient sample analysis show some signal carryover on sulfate and organics, and new desorption methods should be developed to improve throughput. Future standards should be composed of complex organic/inorganic mixtures, similar to what is found in the atmosphere, and perhaps will more accurately account for any aerosol mixture effects on compositional quantification.« less

Authors:
 [1];  [1];  [1];  [1];  [1];  [2];  [3];  [4];  [5]
  1. Washington Univ., St. Louis, MO (United States)
  2. Aerosol Dynamics Inc., Berkeley, CA (United States)
  3. Univ. of California, Berkeley, CA (United States)
  4. EPA Office of Research and Development, Research Triangle Park, NC (United States); Univ. of Colorado, Boulder, CO (United States)
  5. Univ. of Colorado, Boulder, CO (United States)
Publication Date:
Research Org.:
Univ. of Colorado, Denver, CO (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1257994
Grant/Contract Number:  
SC0011105
Resource Type:
Accepted Manuscript
Journal Name:
Atmospheric Measurement Techniques (Online)
Additional Journal Information:
Journal Name: Atmospheric Measurement Techniques (Online); Journal Volume: 9; Journal Issue: 4; Related Information: The Supplement related to this article is available onlineat doi:10.5194/amt-9-1569-2016-supplement.; Journal ID: ISSN 1867-8548
Publisher:
European Geosciences Union
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Williams, Brent J., Zhang, Yaping, Zuo, Xiaochen, Martinez, Raul E., Walker, Michael J., Kreisberg, Nathan M., Goldstein, Allen H., Docherty, Kenneth S., and Jimenez, Jose L. Organic and inorganic decomposition products from the thermal desorption of atmospheric particles. United States: N. p., 2016. Web. doi:10.5194/amt-9-1569-2016.
Williams, Brent J., Zhang, Yaping, Zuo, Xiaochen, Martinez, Raul E., Walker, Michael J., Kreisberg, Nathan M., Goldstein, Allen H., Docherty, Kenneth S., & Jimenez, Jose L. Organic and inorganic decomposition products from the thermal desorption of atmospheric particles. United States. doi:10.5194/amt-9-1569-2016.
Williams, Brent J., Zhang, Yaping, Zuo, Xiaochen, Martinez, Raul E., Walker, Michael J., Kreisberg, Nathan M., Goldstein, Allen H., Docherty, Kenneth S., and Jimenez, Jose L. Mon . "Organic and inorganic decomposition products from the thermal desorption of atmospheric particles". United States. doi:10.5194/amt-9-1569-2016. https://www.osti.gov/servlets/purl/1257994.
@article{osti_1257994,
title = {Organic and inorganic decomposition products from the thermal desorption of atmospheric particles},
author = {Williams, Brent J. and Zhang, Yaping and Zuo, Xiaochen and Martinez, Raul E. and Walker, Michael J. and Kreisberg, Nathan M. and Goldstein, Allen H. and Docherty, Kenneth S. and Jimenez, Jose L.},
abstractNote = {Here, atmospheric aerosol composition is often analyzed using thermal desorption techniques to evaporate samples and deliver organic or inorganic molecules to various designs of detectors for identification and quantification. The organic aerosol (OA) fraction is composed of thousands of individual compounds, some with nitrogen- and sulfur-containing functionality and, often contains oligomeric material, much of which may be susceptible to decomposition upon heating. Here we analyze thermal decomposition products as measured by a thermal desorption aerosol gas chromatograph (TAG) capable of separating thermal decomposition products from thermally stable molecules. The TAG impacts particles onto a collection and thermal desorption (CTD) cell, and upon completion of sample collection, heats and transfers the sample in a helium flow up to 310 °C. Desorbed molecules are refocused at the head of a gas chromatography column that is held at 45 °C and any volatile decomposition products pass directly through the column and into an electron impact quadrupole mass spectrometer. Analysis of the sample introduction (thermal decomposition) period reveals contributions of NO+ (m/z 30), NO2+ (m/z 46), SO+ (m/z 48), and SO2+ (m/z 64), derived from either inorganic or organic particle-phase nitrate and sulfate. CO2+ (m/z 44) makes up a major component of the decomposition signal, along with smaller contributions from other organic components that vary with the type of aerosol contributing to the signal (e.g., m/z 53, 82 observed here for isoprene-derived secondary OA). All of these ions are important for ambient aerosol analyzed with the aerosol mass spectrometer (AMS), suggesting similarity of the thermal desorption processes in both instruments. Ambient observations of these decomposition products compared to organic, nitrate, and sulfate mass concentrations measured by an AMS reveal good correlation, with improved correlations for OA when compared to the AMS oxygenated OA (OOA) component. TAG signal found in the traditional compound elution time period reveals higher correlations with AMS hydrocarbon-like OA (HOA) combined with the fraction of OOA that is less oxygenated. Potential to quantify nitrate and sulfate aerosol mass concentrations using the TAG system is explored through analysis of ammonium sulfate and ammonium nitrate standards. While chemical standards display a linear response in the TAG system, redesorptions of the CTD cell following ambient sample analysis show some signal carryover on sulfate and organics, and new desorption methods should be developed to improve throughput. Future standards should be composed of complex organic/inorganic mixtures, similar to what is found in the atmosphere, and perhaps will more accurately account for any aerosol mixture effects on compositional quantification.},
doi = {10.5194/amt-9-1569-2016},
journal = {Atmospheric Measurement Techniques (Online)},
number = 4,
volume = 9,
place = {United States},
year = {2016},
month = {4}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 4 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Analysis of Organic Aerosols Using a Micro-Orifice Volatilization Impactor Coupled to an Atmospheric-Pressure Chemical Ionization Mass Spectrometer
journal, February 2014

  • Brüggemann, Martin; Vogel, Alexander Lucas; Hoffmann, Thorsten
  • European Journal of Mass Spectrometry, Vol. 20, Issue 1
  • DOI: 10.1255/ejms.1260

Chemical and microphysical characterization of ambient aerosols with the aerodyne aerosol mass spectrometer
journal, January 2007

  • Canagaratna, M. R.; Jayne, J. T.; Jimenez, J. L.
  • Mass Spectrometry Reviews, Vol. 26, Issue 2
  • DOI: 10.1002/mas.20115

Elemental ratio measurements of organic compounds using aerosol mass spectrometry: characterization, improved calibration, and implications
journal, January 2015

  • Canagaratna, M. R.; Jimenez, J. L.; Kroll, J. H.
  • Atmospheric Chemistry and Physics, Vol. 15, Issue 1
  • DOI: 10.5194/acp-15-253-2015

Large contribution of natural aerosols to uncertainty in indirect forcing
journal, November 2013

  • Carslaw, K. S.; Lee, L. A.; Reddington, C. L.
  • Nature, Vol. 503, Issue 7474
  • DOI: 10.1038/nature12674

The application of thermal methods for determining chemical composition of carbonaceous aerosols: A review
journal, August 2007

  • Chow, Judith C.; Yu, Jian Zhen; Watson, John G.
  • Journal of Environmental Science and Health, Part A, Vol. 42, Issue 11
  • DOI: 10.1080/10934520701513365

Advances in Integrated and Continuous Measurements for Particle Mass and Chemical Composition
journal, February 2008

  • Chow, Judith C.; Doraiswamy, Prakash; Watson, John. G.
  • Journal of the Air & Waste Management Association, Vol. 58, Issue 2
  • DOI: 10.3155/1047-3289.58.2.141

Field-Deployable, High-Resolution, Time-of-Flight Aerosol Mass Spectrometer
journal, December 2006

  • DeCarlo, Peter F.; Kimmel, Joel R.; Trimborn, Achim
  • Analytical Chemistry, Vol. 78, Issue 24
  • DOI: 10.1021/ac061249n

Predicting ambient aerosol thermal-optical reflectance (TOR) measurements from infrared spectra: organic carbon
journal, January 2015


The 2005 Study of Organic Aerosols at Riverside (SOAR-1): instrumental intercomparisons and fine particle composition
journal, January 2011

  • Docherty, K. S.; Aiken, A. C.; Huffman, J. A.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 23
  • DOI: 10.5194/acp-11-12387-2011

Intercomparison and evaluation of four semi-continuous PM2.5 sulfate instruments
journal, August 2003


Investigating the water-soluble organic functionality of urban aerosols using two-dimensional correlation of solid-state 13C NMR and FTIR spectral data
journal, September 2015


Determination of the biogenic secondary organic aerosol fraction in the boreal forest by NMR spectroscopy
journal, January 2012

  • Finessi, E.; Decesari, S.; Paglione, M.
  • Atmospheric Chemistry and Physics, Vol. 12, Issue 2
  • DOI: 10.5194/acp-12-941-2012

Mass Spectrum of Nitric Acid
journal, June 1959

  • Friedel, R. A.; Shultz, J. L.; Sharkey, A. G.
  • Analytical Chemistry, Vol. 31, Issue 6
  • DOI: 10.1021/ac60150a615

Observations of gas- and aerosol-phase organic nitrates at BEACHON-RoMBAS 2011
journal, January 2013

  • Fry, J. L.; Draper, D. C.; Zarzana, K. J.
  • Atmospheric Chemistry and Physics, Vol. 13, Issue 17
  • DOI: 10.5194/acp-13-8585-2013

Characterization of Fine Mode Atmospheric Aerosols by Raman Microscopy and Diffuse Reflectance FTIR
journal, November 2014

  • Gaffney, Jeffrey S.; Marley, Nancy A.; Smith, Kenneth J.
  • The Journal of Physical Chemistry A, Vol. 119, Issue 19
  • DOI: 10.1021/jp510361s

Known and Unexplored Organic Constituents in the Earth's Atmosphere
journal, March 2007

  • Goldstein, Allen H.; Galbally, Ian E.
  • Environmental Science & Technology, Vol. 41, Issue 5
  • DOI: 10.1021/es072476p

Thermal desorption comprehensive two-dimensional gas chromatography for in-situ measurements of organic aerosols
journal, April 2008

  • Goldstein, Allen H.; Worton, David R.; Williams, Brent J.
  • Journal of Chromatography A, Vol. 1186, Issue 1-2
  • DOI: 10.1016/j.chroma.2007.09.094

Water-soluble organic compounds in biomass burning aerosols over Amazonia1. Characterization by NMR and GC-MS
journal, January 2002


The formation, properties and impact of secondary organic aerosol: current and emerging issues
journal, January 2009

  • Hallquist, M.; Wenger, J. C.; Baltensperger, U.
  • Atmospheric Chemistry and Physics, Vol. 9, Issue 14
  • DOI: 10.5194/acp-9-5155-2009

Contrasting the direct radiative effect and direct radiative forcing of aerosols
journal, January 2014

  • Heald, C. L.; Ridley, D. A.; Kroll, J. H.
  • Atmospheric Chemistry and Physics, Vol. 14, Issue 11
  • DOI: 10.5194/acp-14-5513-2014

The Magnitude of Bias in the Measurement of PM 25 Arising from Volatilization of Particulate Nitrate from Teflon Filters
journal, June 1999


Aerosol analysis using a Thermal-Desorption Proton-Transfer-Reaction Mass Spectrometer (TD-PTR-MS): a new approach to study processing of organic aerosols
journal, January 2010

  • Holzinger, R.; Williams, J.; Herrmann, F.
  • Atmospheric Chemistry and Physics, Vol. 10, Issue 5
  • DOI: 10.5194/acp-10-2257-2010

Characterization of a real-time tracer for isoprene epoxydiols-derived secondary organic aerosol (IEPOX-SOA) from aerosol mass spectrometer measurements
journal, January 2015

  • Hu, W. W.; Campuzano-Jost, P.; Palm, B. B.
  • Atmospheric Chemistry and Physics, Vol. 15, Issue 20
  • DOI: 10.5194/acp-15-11807-2015

Chemically-resolved aerosol volatility measurements from two megacity field studies
journal, January 2009

  • Huffman, J. A.; Docherty, K. S.; Aiken, A. C.
  • Atmospheric Chemistry and Physics, Vol. 9, Issue 18
  • DOI: 10.5194/acp-9-7161-2009

Evolution of Organic Aerosols in the Atmosphere
journal, December 2009


Spatial Variability of Fine Particle Mass, Components, and Source Contributions during the Regional Air Pollution Study in St. Louis
journal, June 2005

  • Kim, Eugene; Hopke, Philip K.; Pinto, Joseph P.
  • Environmental Science & Technology, Vol. 39, Issue 11
  • DOI: 10.1021/es049824x

Quantification of Hourly Speciated Organic Compounds in Atmospheric Aerosols, Measured by an In-Situ Thermal Desorption Aerosol Gas Chromatograph (TAG)
journal, January 2009

  • Kreisberg, Nathan M.; Hering, Susanne V.; Williams, Brent J.
  • Aerosol Science and Technology, Vol. 43, Issue 1
  • DOI: 10.1080/02786820802459583

Apportioning black carbon to sources using highly time-resolved ambient measurements of organic molecular markers in Pittsburgh
journal, August 2009


Organic Aerosol Speciation: Intercomparison of Thermal Desorption Aerosol GC/MS (TAG) and Filter-Based Techniques
journal, February 2010

  • Lambe, Andrew T.; Chacon-Madrid, Heber J.; Nguyen, Ngoc T.
  • Aerosol Science and Technology, Vol. 44, Issue 2
  • DOI: 10.1080/02786820903447206

Source apportionment of submicron organic aerosols at an urban site by factor analytical modelling of aerosol mass spectra
journal, January 2007

  • Lanz, V. A.; Alfarra, M. R.; Baltensperger, U.
  • Atmospheric Chemistry and Physics, Vol. 7, Issue 6
  • DOI: 10.5194/acp-7-1503-2007

Isoprene Epoxydiols as Precursors to Secondary Organic Aerosol Formation: Acid-Catalyzed Reactive Uptake Studies with Authentic Compounds
journal, November 2011

  • Lin, Ying-Hsuan; Zhang, Zhenfa; Docherty, Kenneth S.
  • Environmental Science & Technology, Vol. 46, Issue 1
  • DOI: 10.1021/es202554c

A novel method for online analysis of gas and particle composition: description and evaluation of a Filter Inlet for Gases and AEROsols (FIGAERO)
journal, January 2014

  • Lopez-Hilfiker, F. D.; Mohr, C.; Ehn, M.
  • Atmospheric Measurement Techniques, Vol. 7, Issue 4
  • DOI: 10.5194/amt-7-983-2014

Development of a volatility and polarity separator (VAPS) for volatility- and polarity-resolved organic aerosol measurement
journal, January 2016


Health Effects of Organic Aerosols
journal, January 2008


Development of a Sample Equilibration System for the TEOM Continuous PM Monitor
journal, August 2000

  • Meyer, Michael B.; Patashnick, Harvey; Ambs, Jeffrey L.
  • Journal of the Air & Waste Management Association, Vol. 50, Issue 8
  • DOI: 10.1080/10473289.2000.10464180

Evaluation of Composition-Dependent Collection Efficiencies for the Aerodyne Aerosol Mass Spectrometer using Field Data
journal, March 2012


Inter-Laboratory Comparison of Air Particulate Monitoring Data
journal, May 1998

  • Nejedlý, Z.; Campbell, J. L.; Teesdale, W. J.
  • Journal of the Air & Waste Management Association, Vol. 48, Issue 5
  • DOI: 10.1080/10473289.1998.10463698

Organic aerosol components observed in Northern Hemispheric datasets from Aerosol Mass Spectrometry
journal, January 2010

  • Ng, N. L.; Canagaratna, M. R.; Zhang, Q.
  • Atmospheric Chemistry and Physics, Vol. 10, Issue 10
  • DOI: 10.5194/acp-10-4625-2010

An Aerosol Chemical Speciation Monitor (ACSM) for Routine Monitoring of the Composition and Mass Concentrations of Ambient Aerosol
journal, July 2011


The Molecular Identification of Organic Compounds in the Atmosphere: State of the Art and Challenges
journal, February 2015

  • Nozière, Barbara; Kalberer, Markus; Claeys, Magda
  • Chemical Reviews, Vol. 115, Issue 10
  • DOI: 10.1021/cr5003485

Health Effects of Fine Particulate Air Pollution: Lines that Connect
journal, June 2006


Evidence for a significant proportion of Secondary Organic Aerosol from isoprene above a maritime tropical forest
journal, January 2011

  • Robinson, N. H.; Hamilton, J. F.; Allan, J. D.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 3
  • DOI: 10.5194/acp-11-1039-2011

The Health Relevance of Ambient Particulate Matter Characteristics: Coherence of Toxicological and Epidemiological Inferences
journal, January 2006


Photochemical processing of organic aerosol at nearby continental sites: contrast between urban plumes and regional aerosol
journal, January 2011

  • Slowik, J. G.; Brook, J.; Chang, R. Y. -W.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 6
  • DOI: 10.5194/acp-11-2991-2011

Method for the Automated Measurement of Fine Particle Nitrate in the Atmosphere
journal, March 2000

  • Stolzenburg, Mark R.; Hering, Susanne V.
  • Environmental Science & Technology, Vol. 34, Issue 5
  • DOI: 10.1021/es990956d

Real-Time Chemical Analysis of Organic Aerosols Using a Thermal Desorption Particle Beam Mass Spectrometer
journal, July 2000

  • Tobias, Herbert J.; Kooiman, Peter M.; Docherty, Kenneth S.
  • Aerosol Science and Technology, Vol. 33, Issue 1-2
  • DOI: 10.1080/027868200410912

Chemical Analysis of Diesel Engine Nanoparticles Using a Nano-DMA/Thermal Desorption Particle Beam Mass Spectrometer
journal, June 2001

  • Tobias, Herbert J.; Beving, Derek E.; Ziemann, Paul J.
  • Environmental Science & Technology, Vol. 35, Issue 11
  • DOI: 10.1021/es0016654

Interpretation of organic components from Positive Matrix Factorization of aerosol mass spectrometric data
journal, January 2009

  • Ulbrich, I. M.; Canagaratna, M. R.; Zhang, Q.
  • Atmospheric Chemistry and Physics, Vol. 9, Issue 9
  • DOI: 10.5194/acp-9-2891-2009

New Directions: Light absorbing aerosols and their atmospheric impacts
journal, December 2013


A Particle-into-Liquid Collector for Rapid Measurement of Aerosol Bulk Chemical Composition
journal, January 2001


An In-Situ Instrument for Speciated Organic Composition of Atmospheric Aerosols: T hermal Desorption A erosol G C/MS-FID (TAG)
journal, June 2006

  • Williams, Brent J.; Goldstein, Allen H.; Kreisberg, Nathan M.
  • Aerosol Science and Technology, Vol. 40, Issue 8
  • DOI: 10.1080/02786820600754631

Major components of atmospheric organic aerosol in southern California as determined by hourly measurements of source marker compounds
journal, January 2010

  • Williams, B. J.; Goldstein, A. H.; Kreisberg, N. M.
  • Atmospheric Chemistry and Physics, Vol. 10, Issue 23
  • DOI: 10.5194/acp-10-11577-2010

The First Combined Thermal Desorption Aerosol Gas Chromatograph—Aerosol Mass Spectrometer (TAG-AMS)
journal, January 2014


Origins and composition of fine atmospheric carbonaceous aerosol in the Sierra Nevada Mountains, California
journal, January 2011

  • Worton, D. R.; Goldstein, A. H.; Farmer, D. K.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 19
  • DOI: 10.5194/acp-11-10219-2011

Determination of nitrate in deposited aerosol particles by thermal decomposition and chemiluminescence
journal, February 1994

  • Yamamoto, Masatoshi.; Kosaka, Hiroshi.
  • Analytical Chemistry, Vol. 66, Issue 3
  • DOI: 10.1021/ac00075a009

Nonpolar organic compounds in fine particles: quantification by thermal desorption–GC/MS and evidence for their significant oxidation in ambient aerosols in Hong Kong
journal, October 2011

  • Yu, Jian Zhen; Huang, X. H. Hilda; Ho, Steven S. H.
  • Analytical and Bioanalytical Chemistry, Vol. 401, Issue 10
  • DOI: 10.1007/s00216-011-5458-5

Particulate Nitrate Measurement Using Nylon Filters
journal, August 2005

  • Yu, Xiao-Ying; Lee, Taehyoung; Ayres, Benjamin
  • Journal of the Air & Waste Management Association, Vol. 55, Issue 8
  • DOI: 10.1080/10473289.2005.10464721

A Technique for Rapid Gas Chromatography Analysis Applied to Ambient Organic Aerosol Measurements from the Thermal Desorption Aerosol Gas Chromatograph (TAG)
journal, October 2014

  • Zhang, Yaping; Williams, Brent J.; Goldstein, Allen H.
  • Aerosol Science and Technology, Vol. 48, Issue 11
  • DOI: 10.1080/02786826.2014.967832

Development of an In Situ Thermal Desorption Gas Chromatography Instrument for Quantifying Atmospheric Semi-Volatile Organic Compounds
journal, December 2012


    Works referencing / citing this record:

    A technique for rapid source apportionment applied to ambient organic aerosol measurements from a thermal desorption aerosol gas chromatograph (TAG)
    journal, January 2016

    • Zhang, Yaping; Williams, Brent J.; Goldstein, Allen H.
    • Atmospheric Measurement Techniques, Vol. 9, Issue 11
    • DOI: 10.5194/amt-9-5637-2016

    A technique for rapid source apportionment applied to ambient organic aerosol measurements from a thermal desorption aerosol gas chromatograph (TAG)
    journal, January 2016

    • Zhang, Yaping; Williams, Brent J.; Goldstein, Allen H.
    • Atmospheric Measurement Techniques, Vol. 9, Issue 11
    • DOI: 10.5194/amt-9-5637-2016