DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: In Situ STEM-EELS Observation of Nanoscale Interfacial Phenomena in All-Solid-State Batteries

Abstract

Behaviors of functional interfaces are crucial factors in the performance and safety of energy storage and conversion devices. Indeed, solid electrode–solid electrolyte interfacial impedance is now considered the main limiting factor in all-solid-state batteries rather than low ionic conductivity of the solid electrolyte. In this paper, we present a new approach to conducting in situ scanning transmission electron microscopy (STEM) coupled with electron energy loss spectroscopy (EELS) in order to uncover the unique interfacial phenomena related to lithium ion transport and its corresponding charge transfer. Our approach allowed quantitative spectroscopic characterization of a galvanostatically biased electrochemical system under in situ conditions. Using a LiCoO2/LiPON/Si thin film battery, an unexpected structurally disordered interfacial layer between LiCoO2 cathode and LiPON electrolyte was discovered to be inherent to this interface without cycling. During in situ charging, spectroscopic characterization revealed that this interfacial layer evolved to form highly oxidized Co ions species along with lithium oxide and lithium peroxide species. These findings suggest that the mechanism of interfacial impedance at the LiCoO2/LiPON interface is caused by chemical changes rather than space charge effects. Finally, insights gained from this technique will shed light on important challenges of interfaces in all-solid-state energy storage and conversion systemsmore » and facilitate improved engineering of devices operated far from equilibrium.« less

Authors:
 [1];  [2];  [3];  [3];  [3];  [3];  [4];  [4];  [1]
  1. Univ. of California, San Diego, CA (United States). Dept. of NanoEngineering
  2. Univ. of California, San Diego, CA (United States). Dept. of NanoEngineering; Amrita Vishwa Vidyapeetham Univ., Kochi (India). Amrita Centre for Nanosciences and Molecular Medicine
  3. Brookhaven National Lab. (BNL), Upton, NY (United States)
  4. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science & Technology Division
Publication Date:
Research Org.:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States); Univ. of California, San Diego, CA (United States); Brookhaven National Laboratory (BNL), Upton, NY (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); USDOE Laboratory Directed Research and Development (LDRD) Program; Science and Engineering Research Board (SERB), India; Science and Engineering Research Board (SERB) (India)
Contributing Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Amrita Vishwa Vidyapeetham Univ., Kochi (India)
OSTI Identifier:
1362191
Alternate Identifier(s):
OSTI ID: 1257962; OSTI ID: 1595355
Report Number(s):
BNL-112300-2016-JA
Journal ID: ISSN 1530-6984; KC0203020; ERKCZ06
Grant/Contract Number:  
AC05-00OR22725; SC0002357; SC0001294; SC0012704
Resource Type:
Accepted Manuscript
Journal Name:
Nano Letters
Additional Journal Information:
Journal Volume: 16; Journal Issue: 6; Journal ID: ISSN 1530-6984
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 25 ENERGY STORAGE; in situ TEM; interfacial phenomena; Lithium ion battery; solid electrolyte; thin film battery

Citation Formats

Wang, Ziying, Santhanagopalan, Dhamodaran, Zhang, Wei, Wang, Feng, Xin, Huolin L., He, Kai, Li, Juchuan, Dudney, Nancy, and Meng, Ying Shirley. In Situ STEM-EELS Observation of Nanoscale Interfacial Phenomena in All-Solid-State Batteries. United States: N. p., 2016. Web. doi:10.1021/acs.nanolett.6b01119.
Wang, Ziying, Santhanagopalan, Dhamodaran, Zhang, Wei, Wang, Feng, Xin, Huolin L., He, Kai, Li, Juchuan, Dudney, Nancy, & Meng, Ying Shirley. In Situ STEM-EELS Observation of Nanoscale Interfacial Phenomena in All-Solid-State Batteries. United States. https://doi.org/10.1021/acs.nanolett.6b01119
Wang, Ziying, Santhanagopalan, Dhamodaran, Zhang, Wei, Wang, Feng, Xin, Huolin L., He, Kai, Li, Juchuan, Dudney, Nancy, and Meng, Ying Shirley. Tue . "In Situ STEM-EELS Observation of Nanoscale Interfacial Phenomena in All-Solid-State Batteries". United States. https://doi.org/10.1021/acs.nanolett.6b01119. https://www.osti.gov/servlets/purl/1362191.
@article{osti_1362191,
title = {In Situ STEM-EELS Observation of Nanoscale Interfacial Phenomena in All-Solid-State Batteries},
author = {Wang, Ziying and Santhanagopalan, Dhamodaran and Zhang, Wei and Wang, Feng and Xin, Huolin L. and He, Kai and Li, Juchuan and Dudney, Nancy and Meng, Ying Shirley},
abstractNote = {Behaviors of functional interfaces are crucial factors in the performance and safety of energy storage and conversion devices. Indeed, solid electrode–solid electrolyte interfacial impedance is now considered the main limiting factor in all-solid-state batteries rather than low ionic conductivity of the solid electrolyte. In this paper, we present a new approach to conducting in situ scanning transmission electron microscopy (STEM) coupled with electron energy loss spectroscopy (EELS) in order to uncover the unique interfacial phenomena related to lithium ion transport and its corresponding charge transfer. Our approach allowed quantitative spectroscopic characterization of a galvanostatically biased electrochemical system under in situ conditions. Using a LiCoO2/LiPON/Si thin film battery, an unexpected structurally disordered interfacial layer between LiCoO2 cathode and LiPON electrolyte was discovered to be inherent to this interface without cycling. During in situ charging, spectroscopic characterization revealed that this interfacial layer evolved to form highly oxidized Co ions species along with lithium oxide and lithium peroxide species. These findings suggest that the mechanism of interfacial impedance at the LiCoO2/LiPON interface is caused by chemical changes rather than space charge effects. Finally, insights gained from this technique will shed light on important challenges of interfaces in all-solid-state energy storage and conversion systems and facilitate improved engineering of devices operated far from equilibrium.},
doi = {10.1021/acs.nanolett.6b01119},
journal = {Nano Letters},
number = 6,
volume = 16,
place = {United States},
year = {Tue May 03 00:00:00 EDT 2016},
month = {Tue May 03 00:00:00 EDT 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 83 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Interfacial Challenges in Solid-State Li Ion Batteries
journal, October 2015

  • Luntz, Alan C.; Voss, Johannes; Reuter, Karsten
  • The Journal of Physical Chemistry Letters, Vol. 6, Issue 22
  • DOI: 10.1021/acs.jpclett.5b02352

A lithium superionic conductor
journal, July 2011

  • Kamaya, Noriaki; Homma, Kenji; Yamakawa, Yuichiro
  • Nature Materials, Vol. 10, Issue 9, p. 682-686
  • DOI: 10.1038/nmat3066

High ionic conductivity in lithium lanthanum titanate
journal, June 1993

  • Inaguma, Yoshiyuki; Liquan, Chen; Itoh, Mitsuru
  • Solid State Communications, Vol. 86, Issue 10, p. 689-693
  • DOI: 10.1016/0038-1098(93)90841-A

Lithium Ionic Conductor Thio-LISICON: The Li2S-GeS2-P2S5 System
journal, January 2001

  • Kanno, Ryoji; Murayama, Masahiro
  • Journal of The Electrochemical Society, Vol. 148, Issue 7, p. A742-A746
  • DOI: 10.1149/1.1379028

Fast Lithium Ion Conduction in Garnet-Type Li7La3Zr2O12
journal, October 2007

  • Murugan, Ramaswamy; Thangadurai, Venkataraman; Weppner, Werner
  • Angewandte Chemie International Edition, Vol. 46, Issue 41, p. 7778-7781
  • DOI: 10.1002/anie.200701144

Compatibility of Li[sub 7]La[sub 3]Zr[sub 2]O[sub 12] Solid Electrolyte to All-Solid-State Battery Using Li Metal Anode
journal, January 2010

  • Kotobuki, Masashi; Munakata, Hirokazu; Kanamura, Kiyoshi
  • Journal of The Electrochemical Society, Vol. 157, Issue 10
  • DOI: 10.1149/1.3474232

Interfacial Observation between LiCoO 2 Electrode and Li 2 S−P 2 S 5 Solid Electrolytes of All-Solid-State Lithium Secondary Batteries Using Transmission Electron Microscopy
journal, February 2010

  • Sakuda, Atsushi; Hayashi, Akitoshi; Tatsumisago, Masahiro
  • Chemistry of Materials, Vol. 22, Issue 3
  • DOI: 10.1021/cm901819c

Enhancement of the High-Rate Capability of Solid-State Lithium Batteries by Nanoscale Interfacial Modification
journal, September 2006

  • Ohta, N.; Takada, K.; Zhang, L.
  • Advanced Materials, Vol. 18, Issue 17, p. 2226-2229
  • DOI: 10.1002/adma.200502604

Reduction of charge transfer resistance at the lithium phosphorus oxynitride/lithium cobalt oxide interface by thermal treatment
journal, August 2005


Charge transfer reaction at the lithium phosphorus oxynitride glass electrolyte/lithium cobalt oxide thin film interface
journal, October 2005


Dielectric Modification of 5V-Class Cathodes for High-Voltage All-Solid-State Lithium Batteries
journal, March 2014

  • Yada, Chihiro; Ohmori, Akihiro; Ide, Kazuto
  • Advanced Energy Materials, Vol. 4, Issue 9
  • DOI: 10.1002/aenm.201301416

Interface Stability in Solid-State Batteries
journal, December 2015


First-Principles Studies on Cation Dopants and Electrolyte|Cathode Interphases for Lithium Garnets
journal, May 2015


First Cross-Section Observation of an All Solid-State Lithium-Ion “Nanobattery” by Transmission Electron Microscopy
journal, March 2008

  • Brazier, A.; Dupont, L.; Dantras-Laffont, L.
  • Chemistry of Materials, Vol. 20, Issue 6
  • DOI: 10.1021/cm7033933

In situ atomic-scale imaging of electrochemical lithiation in silicon
journal, October 2012

  • Liu, Xiao Hua; Wang, Jiang Wei; Huang, Shan
  • Nature Nanotechnology, Vol. 7, Issue 11
  • DOI: 10.1038/nnano.2012.170

Anisotropic Swelling and Fracture of Silicon Nanowires during Lithiation
journal, August 2011

  • Liu, Xiao Hua; Zheng, He; Zhong, Li
  • Nano Letters, Vol. 11, Issue 8, p. 3312-3318
  • DOI: 10.1021/nl201684d

Ultrafast Electrochemical Lithiation of Individual Si Nanowire Anodes
journal, June 2011

  • Liu, Xiao Hua; Zhang, Li Qiang; Zhong, Li
  • Nano Letters, Vol. 11, Issue 6
  • DOI: 10.1021/nl200412p

Reversible Nanopore Formation in Ge Nanowires during Lithiation–Delithiation Cycling: An In Situ Transmission Electron Microscopy Study
journal, September 2011

  • Liu, Xiao Hua; Huang, Shan; Picraux, S. Tom
  • Nano Letters, Vol. 11, Issue 9
  • DOI: 10.1021/nl2024118

In Situ Observation of the Electrochemical Lithiation of a Single SnO2 Nanowire Electrode
journal, December 2010


Tracking lithium transport and electrochemical reactions in nanoparticles
journal, January 2012

  • Wang, Feng; Yu, Hui-Chia; Chen, Min-Hua
  • Nature Communications, Vol. 3, Issue 1
  • DOI: 10.1038/ncomms2185

In Situ Atomic-Scale Imaging of Phase Boundary Migration in FePO 4 Microparticles During Electrochemical Lithiation
journal, July 2013


Observation and Quantification of Nanoscale Processes in Lithium Batteries by Operando Electrochemical (S)TEM
journal, February 2015


Nanoscale Imaging of Lithium Ion Distribution During In Situ Operation of Battery Electrode and Electrolyte
journal, February 2014

  • Holtz, Megan E.; Yu, Yingchao; Gunceler, Deniz
  • Nano Letters, Vol. 14, Issue 3
  • DOI: 10.1021/nl404577c

Dynamic Visualization of the Electric Potential in an All-Solid-State Rechargeable Lithium Battery
journal, June 2010

  • Yamamoto, Kazuo; Iriyama, Yasutoshi; Asaka, Toru
  • Angewandte Chemie International Edition, Vol. 49, Issue 26
  • DOI: 10.1002/anie.200907319

Interface Limited Lithium Transport in Solid-State Batteries
journal, December 2013

  • Santhanagopalan, Dhamodaran; Qian, Danna; McGilvray, Thomas
  • The Journal of Physical Chemistry Letters, Vol. 5, Issue 2
  • DOI: 10.1021/jz402467x

Analytical Electron Microscopy — Study of All Solid-State Batteries
book, July 2015


Unlocking the Potential of Cation-Disordered Oxides for Rechargeable Lithium Batteries
journal, January 2014


Chemical Distribution and Bonding of Lithium in Intercalated Graphite: Identification with Optimized Electron Energy Loss Spectroscopy
journal, January 2011

  • Wang, Feng; Graetz, Jason; Moreno, M. Sergio
  • ACS Nano, Vol. 5, Issue 2
  • DOI: 10.1021/nn1028168

Effects of Configuration Interaction on Intensities and Phase Shifts
journal, December 1961


Electronic Structure of Chemically-Delithiated LiCoO 2 Studied by Electron Energy-Loss Spectrometry
journal, February 2002

  • Graetz, J.; Hightower, A.; Ahn, C. C.
  • The Journal of Physical Chemistry B, Vol. 106, Issue 6
  • DOI: 10.1021/jp0133283

Characterization of oxygen-deficient SrCoO3–δ by electron energy-loss spectroscopy and Z-contrast imaging
journal, May 2000


Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides
journal, July 1997


First-principles alloy theory in oxides
journal, May 2000

  • Ceder, G.; Ven, A. Van der; Marianetti, C.
  • Modelling and Simulation in Materials Science and Engineering, Vol. 8, Issue 3
  • DOI: 10.1088/0965-0393/8/3/311

Probing the electrode/electrolyte interface in the lithium excess layered oxide Li1.2Ni0.2Mn0.6O2
journal, January 2013

  • Carroll, Kyler J.; Qian, Danna; Fell, Chris
  • Physical Chemistry Chemical Physics, Vol. 15, Issue 26
  • DOI: 10.1039/c3cp51927a

Identifying surface structural changes in layered Li-excess nickel manganese oxides in high voltage lithium ion batteries: A joint experimental and theoretical study
journal, January 2011

  • Xu, Bo; Fell, Christopher R.; Chi, Miaofang
  • Energy & Environmental Science, Vol. 4, Issue 6
  • DOI: 10.1039/c1ee01131f

Correlation Between Oxygen Vacancy, Microstrain, and Cation Distribution in Lithium-Excess Layered Oxides During the First Electrochemical Cycle
journal, April 2013

  • Fell, Christopher R.; Qian, Danna; Carroll, Kyler J.
  • Chemistry of Materials, Vol. 25, Issue 9
  • DOI: 10.1021/cm4000119

Investigation of Changes in the Surface Structure of Li x Ni 0.8 Co 0.15 Al 0.05 O 2 Cathode Materials Induced by the Initial Charge
journal, December 2013

  • Hwang, Sooyeon; Chang, Wonyoung; Kim, Seung Min
  • Chemistry of Materials, Vol. 26, Issue 2
  • DOI: 10.1021/cm403332s

Practical aspects of electron energy-loss spectroscopy (EELS) calculations using FEFF8
journal, January 2007


Soft X-Ray Irradiation Effects of Li2O2, Li2CO3 and Li2O Revealed by Absorption Spectroscopy
journal, November 2012


CoO2, The End Member of the LixCoO2 Solid Solution
journal, January 1996

  • Amatucci, G. G.; Tarascon, J. M.; Klein, L. C.
  • Journal of The Electrochemical Society, Vol. 143, Issue 3, p. 1114-1123
  • DOI: 10.1149/1.1836594

Ion energy distribution in ionized dc sputtering measured by an energy-resolved mass spectrometer
journal, May 1999


Energy distribution of ions in an unbalanced magnetron plasma measured with energy-resolved mass spectrometry
journal, February 1997


Charge-Transfer Reaction at the Lithium Phosphorus Oxynitride Glass Electrolyte/Lithium Manganese Oxide Thin-Film Interface and Its Stability on Cycling
journal, January 2006

  • Iriyama, Yasutoshi; Nishimoto, Kazuhiro; Yada, Chihiro
  • Journal of The Electrochemical Society, Vol. 153, Issue 5
  • DOI: 10.1149/1.2178647

High-performance lithium battery anodes using silicon nanowires
journal, December 2007

  • Chan, Candace K.; Peng, Hailin; Liu, Gao
  • Nature Nanotechnology, Vol. 3, Issue 1, p. 31-35
  • DOI: 10.1038/nnano.2007.411

Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells
journal, January 2007


Crack Pattern Formation in Thin Film Lithium-Ion Battery Electrodes
journal, January 2011

  • Li, Juchuan; Dozier, Alan K.; Li, Yunchao
  • Journal of The Electrochemical Society, Vol. 158, Issue 6
  • DOI: 10.1149/1.3574027

Works referencing / citing this record:

Structural and Electrochemical Characterization of Thin Film Li 2 MoO 3 Electrodes
journal, January 2019

  • Self, Ethan C.; Zhang, Yiman; Kercher, Andrew K.
  • Journal of The Electrochemical Society, Vol. 166, Issue 6
  • DOI: 10.1149/2.1161904jes

Designing Safe Electrolyte Systems for a High-Stability Lithium-Sulfur Battery
journal, January 2018

  • Chen, Wei; Lei, Tianyu; Wu, Chunyang
  • Advanced Energy Materials, Vol. 8, Issue 10
  • DOI: 10.1002/aenm.201702348

Review—Promises and Challenges of In Situ Transmission Electron Microscopy Electrochemical Techniques in the Studies of Lithium Ion Batteries
journal, January 2017

  • Xie, Zhi-Hui; Jiang, Zimin; Zhang, Xueyuan
  • Journal of The Electrochemical Society, Vol. 164, Issue 9
  • DOI: 10.1149/2.1451709jes

Reducing the Interfacial Resistance in All‐Solid‐State Lithium Batteries Based on Oxide Ceramic Electrolytes
journal, April 2019


Understanding materials challenges for rechargeable ion batteries with in situ transmission electron microscopy
journal, August 2017

  • Yuan, Yifei; Amine, Khalil; Lu, Jun
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms15806

Electro–Chemo–Mechanical Issues at the Interfaces in Solid‐State Lithium Metal Batteries
journal, April 2019


In Situ Transmission Electron Microscopy Studies of Electrochemical Reaction Mechanisms in Rechargeable Batteries
journal, June 2019


Understanding interface stability in solid-state batteries
journal, December 2019


Material structure, properties, and dynamics through scanning transmission electron microscopy
journal, April 2018

  • Pennycook, Stephen J.; Li, Changjian; Li, Mengsha
  • Journal of Analytical Science and Technology, Vol. 9, Issue 1
  • DOI: 10.1186/s40543-018-0142-4

In Situ Direct Lithium Distribution Analysis Around Interfaces in an All‐Solid‐State Rechargeable Lithium Battery by Combined Ion‐Beam Method
journal, April 2019

  • Tsuchiya, Bun; Ohnishi, Junji; Sasaki, Yoshitaka
  • Advanced Materials Interfaces, Vol. 6, Issue 14
  • DOI: 10.1002/admi.201900100

Designing solid-state electrolytes for safe, energy-dense batteries
journal, February 2020


Self-Standing 3D Cathodes for All-Solid-State Thin Film Lithium Batteries with Improved Interface Kinetics
journal, November 2018


Three-dimensional atomic-scale observation of structural evolution of cathode material in a working all-solid-state battery
journal, August 2018


Interphases, Interfaces, and Surfaces of Active Materials in Rechargeable Batteries and Perovskite Solar Cells
journal, January 2020


Interfacial Incompatibility and Internal Stresses in All‐Solid‐State Lithium Ion Batteries
journal, August 2019

  • He, Yanming; Lu, Chuanyang; Liu, Shan
  • Advanced Energy Materials, Vol. 9, Issue 36
  • DOI: 10.1002/aenm.201901810

Tuning the interlayer of transition metal oxides for electrochemical energy storage
journal, October 2016


In Situ Transmission Electron Microscopy for Energy Materials and Devices
journal, June 2019

  • Fan, Zheng; Zhang, Liqiang; Baumann, Daniel
  • Advanced Materials, Vol. 31, Issue 33
  • DOI: 10.1002/adma.201900608

Review of Recent Development of In Situ/Operando Characterization Techniques for Lithium Battery Research
journal, May 2019

  • Liu, Dongqing; Shadike, Zulipiya; Lin, Ruoqian
  • Advanced Materials, Vol. 31, Issue 28
  • DOI: 10.1002/adma.201806620

Origin of Degradation in Si-Based All-Solid-State Li-Ion Microbatteries
journal, September 2018

  • Chen, Chunguang; Oudenhoven, Jos F. M.; Danilov, Dmitri L.
  • Advanced Energy Materials, Vol. 8, Issue 30
  • DOI: 10.1002/aenm.201801430

Direct observation of leakage currents in a metal–insulator–metal capacitor using in situ transmission electron microscopy
journal, August 2018


Ni‐Rich Layered Cathode Materials with Electrochemo‐Mechanically Compliant Microstructures for All‐Solid‐State Li Batteries
journal, December 2019

  • Jung, Sung Hoo; Kim, Un‐Hyuck; Kim, Jae‐Hyung
  • Advanced Energy Materials, Vol. 10, Issue 6
  • DOI: 10.1002/aenm.201903360

Kinetics‐Controlled Degradation Reactions at Crystalline LiPON/Li x CoO 2 and Crystalline LiPON/Li‐Metal Interfaces
journal, March 2018

  • Leung, Kevin; Pearse, Alexander J.; Talin, A. Alec
  • ChemSusChem, Vol. 11, Issue 12
  • DOI: 10.1002/cssc.201800027

Reviving lithium cobalt oxide-based lithium secondary batteries-toward a higher energy density
journal, January 2018

  • Wang, Longlong; Chen, Bingbing; Ma, Jun
  • Chemical Society Reviews, Vol. 47, Issue 17
  • DOI: 10.1039/c8cs00322j

The influence of stress field on Li electrodeposition in Li-metal battery
journal, July 2018

  • Yurkiv, Vitaliy; Foroozan, Tara; Ramasubramanian, Ajaykrishna
  • MRS Communications, Vol. 8, Issue 03
  • DOI: 10.1557/mrc.2018.146

Anomalous metal segregation in lithium-rich material provides design rules for stable cathode in lithium-ion battery
journal, April 2019


Interfaces Between Cathode and Electrolyte in Solid State Lithium Batteries: Challenges and Perspectives
journal, December 2018


Atomic-Scale Direct Identification of Surface Variations in Cathode Oxides for Aqueous and Nonaqueous Lithium-Ion Batteries
journal, January 2019


Understanding the role of aluminium in determining the surface structure and electrochemical performance of layered cathodes
journal, January 2019


First-principles study of Li-ion distribution at γ Li 3 PO 4 /metal interfaces
journal, January 2020


Recent progress for all solid state battery using sulfide and oxide solid electrolytes
journal, January 2019

  • Shoji, Mao; Cheng, Eric Jianfeng; Kimura, Takeshi
  • Journal of Physics D: Applied Physics, Vol. 52, Issue 10
  • DOI: 10.1088/1361-6463/aaf7e2

Materials Structure, Properties and Dynamics through Scanning Transmission Electron Microscopy
text, January 2019


Understanding materials challenges for rechargeable ion batteries with in situ transmission electron microscopy
journal, August 2017

  • Yuan, Yifei; Amine, Khalil; Lu, Jun
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms15806

Three-dimensional atomic-scale observation of structural evolution of cathode material in a working all-solid-state battery
journal, August 2018


Anomalous metal segregation in lithium-rich material provides design rules for stable cathode in lithium-ion battery
journal, April 2019


Interfaces Between Cathode and Electrolyte in Solid State Lithium Batteries: Challenges and Perspectives
journal, December 2018


Materials Structure, Properties and Dynamics through Scanning Transmission Electron Microscopy
text, January 2019