skip to main content


Title: Unraveling the Dynamics of Aminopolymer/Silica Composites

Branched poly(ethylenimine) (PEI) encapsulated within mesoporous silica (SBA-15), has proven to be an eective sorbent for developing carbon capture technologies. However, the structure-property correlations which govern their adsorptive properties is not well understood. By combining coarse-grained molecular dynamics simulations and neutron scattering experiments we are able to construct, and validate, a detailed model of the dynamics and morphology of the conned polymer within the mesoporous support. By varying the simulation properties we are able to probe, for the rst time, the direct relationship between the structure of the polymer and the non-monotonic dynamics of the polymer as a function of monomer concentration within an adsorbing cylindrical pore. Overall the simulation results are in good agreement with quasi-elastic neutron scattering (QENS) studies, suggesting an approach that can be a useful guide for understanding how to tune porous polymer composites for enhancing desired dynamical and structural behavior targeting enhanced carbon dioxide adsorption.
 [1] ;  [2] ;  [3] ;  [2] ;  [4] ;  [2] ;  [1]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Science (CNMS); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Computer Science and Mathematics Division
  2. Georgia Inst. of Technology, Atlanta, GA (United States)
  3. Georgia Inst. of Technology, Atlanta, GA (United States); Univ. of Colorado, Boulder, CO (United States)
  4. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Chemical Sciences Division
Publication Date:
Grant/Contract Number:
AC05-00OR22725; SC0012577; DMR-1508249
Accepted Manuscript
Journal Name:
Additional Journal Information:
Journal Volume: 32; Journal Issue: 11; Journal ID: ISSN 0743-7463
American Chemical Society
Research Org:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source; Oak Ridge Leadership Computing Facility (OLCF)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Country of Publication:
United States
OSTI Identifier:
Alternate Identifier(s):
OSTI ID: 1257895