DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Unraveling the Complex Delithiation Mechanisms of Olivine-Type Cathode Materials, LiFe x Co 1– x PO 4

Abstract

The delithiation mechanisms occurring within the olivine-type class of cathode materials for Li-ion batteries have received considerable attention because of the good capacity retention at high rates for LiFePO4. A comprehensive mechanistic study of the (de)lithiation reactions that occur when the substituted olivine-type cathode materials LiFe$$_x$$Co1–$$_x$$PO4 ($$x$$ = 0, 0.05, 0.125, 0.25, 0.5, 0.75, 0.875, 0.95, 1) are electrochemically cycled is reported here using in situ X-ray diffraction (XRD) data and supporting ex situ 31P NMR spectra. On the first charge, two intermediate phases are observed and identified: Li1–$$_x$$(Fe3+)$$_x$$(Co2+)1–$$_x$$PO4 for $0 < x < 1$ (i.e., after oxidation of Fe2+ to Fe3+) and Li2/3Fe$$_x$$Co1–$$_x$$PO4 for $0 ≤ x ≤ 0.5$ ($i.e.$, the Co-majority materials). For the Fe-rich materials, we study how nonequilibrium, single-phase mechanisms that occur discretely in single particles, as observed for LiFePO4 at high rates, are affected by Co substitution. In the Co-majority materials, a two-phase mechanism with a coherent interface is observed, as was seen in LiCoPO4, and we discuss how it is manifested in the XRD patterns. We then compare the nonequilibrium, single-phase mechanism with the bulk single-phase and coherent interface two-phase mechanisms. Despite the apparent differences between these mechanisms, we discuss how they are related and interconverted as a function of Fe/Co substitution and the potential implications for the electrochemistry of this system.

Authors:
 [1];  [1];  [1];  [2];  [2];  [2];  [2];  [3]
  1. Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, Cambridgeshire CB2 1EW, U.K.
  2. X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
  3. Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, Cambridgeshire CB2 1EW, U.K., Department of Chemistry, State University of New York at Stony Brook, Stony Brook, New York 11794-3400, United States
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC) (United States). Northeastern Center for Chemical Energy Storage (NECCES)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1257503
Alternate Identifier(s):
OSTI ID: 1371400
Grant/Contract Number:  
SC0001294
Resource Type:
Published Article
Journal Name:
Chemistry of Materials
Additional Journal Information:
Journal Name: Chemistry of Materials Journal Volume: 28 Journal Issue: 11; Journal ID: ISSN 0897-4756
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 25 ENERGY STORAGE; energy storage (including batteries and capacitors); defects; charge transport; materials and chemistry by design; synthesis (novel materials)

Citation Formats

Strobridge, Fiona C., Liu, Hao, Leskes, Michal, Borkiewicz, Olaf J., Wiaderek, Kamila M., Chupas, Peter J., Chapman, Karena W., and Grey, Clare P. Unraveling the Complex Delithiation Mechanisms of Olivine-Type Cathode Materials, LiFe x Co 1– x PO 4. United States: N. p., 2016. Web. doi:10.1021/acs.chemmater.6b00319.
Strobridge, Fiona C., Liu, Hao, Leskes, Michal, Borkiewicz, Olaf J., Wiaderek, Kamila M., Chupas, Peter J., Chapman, Karena W., & Grey, Clare P. Unraveling the Complex Delithiation Mechanisms of Olivine-Type Cathode Materials, LiFe x Co 1– x PO 4. United States. https://doi.org/10.1021/acs.chemmater.6b00319
Strobridge, Fiona C., Liu, Hao, Leskes, Michal, Borkiewicz, Olaf J., Wiaderek, Kamila M., Chupas, Peter J., Chapman, Karena W., and Grey, Clare P. Wed . "Unraveling the Complex Delithiation Mechanisms of Olivine-Type Cathode Materials, LiFe x Co 1– x PO 4". United States. https://doi.org/10.1021/acs.chemmater.6b00319.
@article{osti_1257503,
title = {Unraveling the Complex Delithiation Mechanisms of Olivine-Type Cathode Materials, LiFe x Co 1– x PO 4},
author = {Strobridge, Fiona C. and Liu, Hao and Leskes, Michal and Borkiewicz, Olaf J. and Wiaderek, Kamila M. and Chupas, Peter J. and Chapman, Karena W. and Grey, Clare P.},
abstractNote = {The delithiation mechanisms occurring within the olivine-type class of cathode materials for Li-ion batteries have received considerable attention because of the good capacity retention at high rates for LiFePO4. A comprehensive mechanistic study of the (de)lithiation reactions that occur when the substituted olivine-type cathode materials LiFe$_x$Co1–$_x$PO4 ($x$ = 0, 0.05, 0.125, 0.25, 0.5, 0.75, 0.875, 0.95, 1) are electrochemically cycled is reported here using in situ X-ray diffraction (XRD) data and supporting ex situ 31P NMR spectra. On the first charge, two intermediate phases are observed and identified: Li1–$_x$(Fe3+)$_x$(Co2+)1–$_x$PO4 for $0 < x < 1$ (i.e., after oxidation of Fe2+ to Fe3+) and Li2/3Fe$_x$Co1–$_x$PO4 for $0 ≤ x ≤ 0.5$ ($i.e.$, the Co-majority materials). For the Fe-rich materials, we study how nonequilibrium, single-phase mechanisms that occur discretely in single particles, as observed for LiFePO4 at high rates, are affected by Co substitution. In the Co-majority materials, a two-phase mechanism with a coherent interface is observed, as was seen in LiCoPO4, and we discuss how it is manifested in the XRD patterns. We then compare the nonequilibrium, single-phase mechanism with the bulk single-phase and coherent interface two-phase mechanisms. Despite the apparent differences between these mechanisms, we discuss how they are related and interconverted as a function of Fe/Co substitution and the potential implications for the electrochemistry of this system.},
doi = {10.1021/acs.chemmater.6b00319},
journal = {Chemistry of Materials},
number = 11,
volume = 28,
place = {United States},
year = {Wed Jun 01 00:00:00 EDT 2016},
month = {Wed Jun 01 00:00:00 EDT 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1021/acs.chemmater.6b00319

Citation Metrics:
Cited by: 32 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

A twelve-analyzer detector system for high-resolution powder diffraction
journal, July 2008

  • Lee, Peter L.; Shu, Deming; Ramanathan, Mohan
  • Journal of Synchrotron Radiation, Vol. 15, Issue 5
  • DOI: 10.1107/S0909049508018438

Mixed LiCo0.6M0.4PO4 (M = Mn, Fe, Ni) phosphates: cycling mechanism and thermal stability
journal, January 2009

  • Bramnik, Natalia N.; Trots, Dmytro M.; Hofmann, Heiko J.
  • Physical Chemistry Chemical Physics, Vol. 11, Issue 17
  • DOI: 10.1039/b901319a

Identifying the Structure of the Intermediate, Li 2/3 CoPO 4 , Formed during Electrochemical Cycling of LiCoPO 4
journal, October 2014

  • Strobridge, Fiona C.; Clément, Raphaële J.; Leskes, Michal
  • Chemistry of Materials, Vol. 26, Issue 21
  • DOI: 10.1021/cm502680w

Extended Solid Solutions and Coherent Transformations in Nanoscale Olivine Cathodes
journal, February 2014

  • Ravnsbæk, D. B.; Xiang, K.; Xing, W.
  • Nano Letters, Vol. 14, Issue 3
  • DOI: 10.1021/nl404679t

Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides
journal, September 1976


Crystal and magnetic structures of electrochemically delithiated Li1−xCoPO4 phases
journal, January 2009


Isolation of Solid Solution Phases in Size-Controlled Li x FePO 4 at Room Temperature
journal, February 2009

  • Kobayashi, Genki; Nishimura, Shin-ichi; Park, Min-Sik
  • Advanced Functional Materials, Vol. 19, Issue 3
  • DOI: 10.1002/adfm.200801522

Li Conductivity in Li[sub x]MPO[sub 4] (M = Mn, Fe, Co, Ni) Olivine Materials
journal, January 2004

  • Morgan, D.; Van der Ven, A.; Ceder, G.
  • Electrochemical and Solid-State Letters, Vol. 7, Issue 2
  • DOI: 10.1149/1.1633511

Application of symmetrized harmonics expansion to correction of the preferred orientation effect
journal, August 1993


Why Substitution Enhances the Reactivity of LiFePO 4
journal, December 2012

  • Omenya, Fredrick; Chernova, Natasha A.; Zhang, Ruibo
  • Chemistry of Materials, Vol. 25, Issue 1
  • DOI: 10.1021/cm303259j

Electron Microscopy Study of the LiFePO[sub 4] to FePO[sub 4] Phase Transition
journal, January 2006

  • Chen, Guoying; Song, Xiangyun; Richardson, Thomas J.
  • Electrochemical and Solid-State Letters, Vol. 9, Issue 6
  • DOI: 10.1149/1.2192695

Kinetics of non-equilibrium lithium incorporation in LiFePO4
journal, July 2011

  • Malik, Rahul; Zhou, Fei; Ceder, G.
  • Nature Materials, Vol. 10, Issue 8
  • DOI: 10.1038/nmat3065

A neutron powder diffraction study of LiCoxFe1−xPO4 for x=0, 0.25, 0.40, 0.60 and 0.75
journal, June 2006


Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model
journal, July 2008

  • Delmas, C.; Maccario, M.; Croguennec, L.
  • Nature Materials, Vol. 7, Issue 8
  • DOI: 10.1038/nmat2230

Suppression of Phase Separation in LiFePO 4 Nanoparticles During Battery Discharge
journal, November 2011

  • Bai, Peng; Cogswell, Daniel A.; Bazant, Martin Z.
  • Nano Letters, Vol. 11, Issue 11
  • DOI: 10.1021/nl202764f

Texture in Rietveld refinement
journal, October 1992


Structural, Transport and Electrochemical Properties of LiFePO4 Substituted in Lithium and Iron Sublattices (Al, Zr, W, Mn, Co and Ni)
journal, April 2013

  • Molenda, Janina; Kulka, Andrzej; Milewska, Anna
  • Materials, Vol. 6, Issue 5
  • DOI: 10.3390/ma6051656

Dependence on Crystal Size of the Nanoscale Chemical Phase Distribution and Fracture in Li x FePO 4
journal, June 2015


Battery materials for ultrafast charging and discharging
journal, March 2009

  • Kang, Byoungwoo; Ceder, Gerbrand
  • Nature, Vol. 458, Issue 7235, p. 190-193
  • DOI: 10.1038/nature07853

Rate-Induced Solubility and Suppression of the First-Order Phase Transition in Olivine LiFePO 4
journal, April 2014

  • Zhang, Xiaoyu; van Hulzen, Martijn; Singh, Deepak P.
  • Nano Letters, Vol. 14, Issue 5
  • DOI: 10.1021/nl404285y

Particle Size Dependence of the Ionic Diffusivity
journal, October 2010

  • Malik, Rahul; Burch, Damian; Bazant, Martin
  • Nano Letters, Vol. 10, Issue 10
  • DOI: 10.1021/nl1023595

Rate performance and structural change of Cr-doped LiFePO4/C during cycling
journal, November 2008


Capturing metastable structures during high-rate cycling of LiFePO4 nanoparticle electrodes
journal, June 2014


Direct view on the phase evolution in individual LiFePO4 nanoparticles during Li-ion battery cycling
journal, September 2015

  • Zhang, Xiaoyu; van Hulzen, Martijn; Singh, Deepak P.
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9333

Vanadium Modified LiFePO[sub 4] Cathode for Li-Ion Batteries
journal, January 2009

  • Hong, Jian; Wang, C. S.; Chen, X.
  • Electrochemical and Solid-State Letters, Vol. 12, Issue 2
  • DOI: 10.1149/1.3039795

Comparative Kinetic Study of Olivine Li[sub x]MPO[sub 4] (M=Fe, Mn)
journal, January 2004

  • Yonemura, Masao; Yamada, Atsuo; Takei, Yuki
  • Journal of The Electrochemical Society, Vol. 151, Issue 9
  • DOI: 10.1149/1.1773731

Proof of Intercrystallite Ionic Transport in LiMPO 4 Electrodes (M = Fe, Mn)
journal, May 2009

  • Lee, Kyu Tae; Kan, Wang H.; Nazar, Linda F.
  • Journal of the American Chemical Society, Vol. 131, Issue 17
  • DOI: 10.1021/ja8090559

Parametric Rietveld refinement
journal, January 2007


High voltage stable liquid electrolytes for Li1+xMn2O4/carbon rocking-chair lithium batteries
journal, March 1995


Nonequilibrium Thermodynamics of Porous Electrodes
journal, January 2012

  • Ferguson, Todd R.; Bazant, Martin Z.
  • Journal of The Electrochemical Society, Vol. 159, Issue 12
  • DOI: 10.1149/2.048212jes

Phase Transitions Occurring upon Lithium Insertion−Extraction of LiCoPO 4
journal, February 2007

  • Bramnik, Natalia N.; Nikolowski, Kristian; Baehtz, Carsten
  • Chemistry of Materials, Vol. 19, Issue 4
  • DOI: 10.1021/cm062246u

The AMPIX electrochemical cell: a versatile apparatus for in situ X-ray scattering and spectroscopic measurements
journal, November 2012

  • Borkiewicz, Olaf J.; Shyam, Badri; Wiaderek, Kamila M.
  • Journal of Applied Crystallography, Vol. 45, Issue 6
  • DOI: 10.1107/S0021889812042720

Study of the effect of different synthesis routes on Li extraction–insertion from LiCoPO4
journal, July 2005


Optimized solid-state synthesis of LiFePO4 cathode materials using ball-milling
journal, April 2008


Mechanism and kinetic studies on the synthesis of LiFePO4via solid-state reactions
journal, January 2013

  • Yang, Xulai; Liu, Dajun; Xu, Xiaoming
  • CrystEngComm, Vol. 15, Issue 48
  • DOI: 10.1039/c3ce41063c

Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries
journal, April 1997

  • Padhi, A. K.
  • Journal of The Electrochemical Society, Vol. 144, Issue 4, p. 1188-1194
  • DOI: 10.1149/1.1837571

Rapid SECM probing of dissolution of LiCoO2 battery materials in an ionic liquid
journal, November 2012


Size-Dependent Lithium Miscibility Gap in Nanoscale Li[sub 1−x]FePO[sub 4]
journal, January 2007

  • Meethong, Nonglak; Huang, Hsiao-Ying Shadow; Carter, W. Craig
  • Electrochemical and Solid-State Letters, Vol. 10, Issue 5
  • DOI: 10.1149/1.2710960

A charge-flipping algorithm incorporating the tangent formula for solving difficult structures
journal, August 2007

  • Coelho, A. A.
  • Acta Crystallographica Section A Foundations of Crystallography, Vol. 63, Issue 5
  • DOI: 10.1107/S0108767307036112