skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Activating and optimizing MoS 2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies

Abstract

As a promising non-precious catalyst for the hydrogen evolution reaction, molybdenum disulphide (MoS 2) is known to contain active edge sites and an inert basal plane. Activating the MoS 2 basal plane could further enhance its HER activity but is not often a strategy for doing so. Herein, we report the first activation and optimization of the basal plane of monolayer 2H-MoS 2 for HER by introducing sulphur (S) vacancies and strain. Our theoretical and experimental results show that the S-vacancies are new catalytic sites in the basal plane, where gap states around the Fermi level allow hydrogen to bind directly to exposed Mo atoms. The hydrogen adsorption free energy (ΔG H) can be further manipulated by straining the surface with S-vacancies, which fine-tunes the catalytic activity. Furthermore, proper combinations of S-vacancy and strain yield the optimal ΔG H = 0 eV, which allows us to achieve the highest intrinsic HER activity among molybdenum-sulphide-based catalysts.

Authors:
 [1]; ORCiD logo [2];  [1];  [1];  [3];  [3];  [1];  [1];  [3];  [4];  [2];  [1]
  1. Stanford Univ., Stanford, CA (United States)
  2. Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)
  3. SLAC National Accelerator Lab., Menlo Park, CA (United States); Stanford Univ., Stanford, CA (United States)
  4. SLAC National Accelerator Lab., Menlo Park, CA (United States)
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC) (United States). Center on Nanostructuring for Efficient Energy Conversion (CNEEC); SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1257223
Grant/Contract Number:  
AC02-76SF00515
Resource Type:
Accepted Manuscript
Journal Name:
Nature Materials
Additional Journal Information:
Journal Volume: 15; Journal Issue: 1; Journal ID: ISSN 1476-1122
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; chemical engineering; electrocatalysis; two-dimensional materials

Citation Formats

Li, Hong, Tsai, Charlie, Koh, Ai Leen, Cai, Lili, Contryman, Alex W., Fragapane, Alex H., Zhao, Jiheng, Han, Hyun Soon, Manoharan, Hari C., Abild-Pedersen, Frank, Nørskov, Jens K., and Zheng, Xiaolin. Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. United States: N. p., 2015. Web. doi:10.1038/NMAT4465.
Li, Hong, Tsai, Charlie, Koh, Ai Leen, Cai, Lili, Contryman, Alex W., Fragapane, Alex H., Zhao, Jiheng, Han, Hyun Soon, Manoharan, Hari C., Abild-Pedersen, Frank, Nørskov, Jens K., & Zheng, Xiaolin. Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. United States. doi:10.1038/NMAT4465.
Li, Hong, Tsai, Charlie, Koh, Ai Leen, Cai, Lili, Contryman, Alex W., Fragapane, Alex H., Zhao, Jiheng, Han, Hyun Soon, Manoharan, Hari C., Abild-Pedersen, Frank, Nørskov, Jens K., and Zheng, Xiaolin. Mon . "Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies". United States. doi:10.1038/NMAT4465. https://www.osti.gov/servlets/purl/1257223.
@article{osti_1257223,
title = {Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies},
author = {Li, Hong and Tsai, Charlie and Koh, Ai Leen and Cai, Lili and Contryman, Alex W. and Fragapane, Alex H. and Zhao, Jiheng and Han, Hyun Soon and Manoharan, Hari C. and Abild-Pedersen, Frank and Nørskov, Jens K. and Zheng, Xiaolin},
abstractNote = {As a promising non-precious catalyst for the hydrogen evolution reaction, molybdenum disulphide (MoS2) is known to contain active edge sites and an inert basal plane. Activating the MoS2 basal plane could further enhance its HER activity but is not often a strategy for doing so. Herein, we report the first activation and optimization of the basal plane of monolayer 2H-MoS2 for HER by introducing sulphur (S) vacancies and strain. Our theoretical and experimental results show that the S-vacancies are new catalytic sites in the basal plane, where gap states around the Fermi level allow hydrogen to bind directly to exposed Mo atoms. The hydrogen adsorption free energy (ΔGH) can be further manipulated by straining the surface with S-vacancies, which fine-tunes the catalytic activity. Furthermore, proper combinations of S-vacancy and strain yield the optimal ΔGH = 0 eV, which allows us to achieve the highest intrinsic HER activity among molybdenum-sulphide-based catalysts.},
doi = {10.1038/NMAT4465},
journal = {Nature Materials},
number = 1,
volume = 15,
place = {United States},
year = {2015},
month = {11}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Biomimetic Hydrogen Evolution:  MoS 2 Nanoparticles as Catalyst for Hydrogen Evolution
journal, April 2005

  • Hinnemann, Berit; Moses, Poul Georg; Bonde, Jacob
  • Journal of the American Chemical Society, Vol. 127, Issue 15
  • DOI: 10.1021/ja0504690

Computational high-throughput screening of electrocatalytic materials for hydrogen evolution
journal, October 2006

  • Greeley, Jeff; Jaramillo, Thomas F.; Bonde, Jacob
  • Nature Materials, Vol. 5, Issue 11, p. 909-913
  • DOI: 10.1038/nmat1752

Recent developments in transition metal carbides and nitrides as hydrogen evolution electrocatalysts
journal, January 2013

  • Chen, Wei-Fu; Muckerman, James T.; Fujita, Etsuko
  • Chemical Communications, Vol. 49, Issue 79
  • DOI: 10.1039/c3cc44076a

Catalyzing the Hydrogen Evolution Reaction (HER) with Molybdenum Sulfide Nanomaterials
journal, October 2014

  • Benck, Jesse D.; Hellstern, Thomas R.; Kibsgaard, Jakob
  • ACS Catalysis, Vol. 4, Issue 11
  • DOI: 10.1021/cs500923c

Identification of Active Edge Sites for Electrochemical H2 Evolution from MoS2 Nanocatalysts
journal, July 2007

  • Jaramillo, T. F.; Jorgensen, K. P.; Bonde, J.
  • Science, Vol. 317, Issue 5834, p. 100-102
  • DOI: 10.1126/science.1141483

MoS2 Nanoparticles Grown on Graphene An Advanced Catalyst for the Hydrogen Evolution Reaction
journal, May 2011

  • Li, Yanguang; Wang, Hailiang; Xie, Liming
  • Journal of the American Chemical Society, Vol. 133, Issue 19, p. 7296-7299
  • DOI: 10.1021/ja201269b

MoS 2 /Graphene Cocatalyst for Efficient Photocatalytic H 2 Evolution under Visible Light Irradiation
journal, June 2014

  • Chang, Kun; Mei, Zongwei; Wang, Tao
  • ACS Nano, Vol. 8, Issue 7
  • DOI: 10.1021/nn5019945

Synthesis of MoS2 and MoSe2 Films with Vertically Aligned Layers
journal, February 2013

  • Kong, Desheng; Wang, Haotian; Cha, Judy J.
  • Nano Letters, Vol. 13, Issue 3, p. 1341-1347
  • DOI: 10.1021/nl400258t

Core–shell MoO3–MoS2 Nanowires for Hydrogen Evolution A Functional Design for Electrocatalytic Materials
journal, October 2011

  • Chen, Zhebo; Cummins, Dustin; Reinecke, Benjamin N.
  • Nano Letters, Vol. 11, Issue 10, p. 4168-4175
  • DOI: 10.1021/nl2020476

Defect-Rich MoS 2 Ultrathin Nanosheets with Additional Active Edge Sites for Enhanced Electrocatalytic Hydrogen Evolution
journal, August 2013


Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis
journal, October 2012

  • Kibsgaard, Jakob; Chen, Zhebo; Reinecke, Benjamin N.
  • Nature Materials, Vol. 11, Issue 11, p. 963-969
  • DOI: 10.1038/nmat3439

Hydrogen evolution on nano-particulate transition metal sulfides
journal, January 2009

  • Bonde, Jacob; Moses, Poul G.; Jaramillo, Thomas F.
  • Faraday Discuss., Vol. 140
  • DOI: 10.1039/B803857K

Transition-metal doped edge sites in vertically aligned MoS2 catalysts for enhanced hydrogen evolution
journal, January 2015


Enhanced Hydrogen Evolution Catalysis from Chemically Exfoliated Metallic MoS 2 Nanosheets
journal, May 2013

  • Lukowski, Mark A.; Daniel, Andrew S.; Meng, Fei
  • Journal of the American Chemical Society, Vol. 135, Issue 28
  • DOI: 10.1021/ja404523s

Conducting MoS 2 Nanosheets as Catalysts for Hydrogen Evolution Reaction
journal, November 2013

  • Voiry, Damien; Salehi, Maryam; Silva, Rafael
  • Nano Letters, Vol. 13, Issue 12
  • DOI: 10.1021/nl403661s

Universality in Heterogeneous Catalysis
journal, July 2002

  • Nørskov, J. K.; Bligaard, T.; Logadottir, A.
  • Journal of Catalysis, Vol. 209, Issue 2
  • DOI: 10.1006/jcat.2002.3615

Trends in the Exchange Current for Hydrogen Evolution
journal, January 2005

  • Nørskov, J. K.; Bligaard, T.; Logadottir, A.
  • Journal of The Electrochemical Society, Vol. 152, Issue 3
  • DOI: 10.1149/1.1856988

Alloy catalysts designed from first principles
journal, October 2004

  • Greeley, Jeff; Mavrikakis, Manos
  • Nature Materials, Vol. 3, Issue 11
  • DOI: 10.1038/nmat1223

Trends in the Hydrogen Evolution Activity of Metal Carbide Catalysts
journal, March 2014

  • Michalsky, Ronald; Zhang, Yin-Jia; Peterson, Andrew A.
  • ACS Catalysis, Vol. 4, Issue 5
  • DOI: 10.1021/cs500056u

Tuning the MoS 2 Edge-Site Activity for Hydrogen Evolution via Support Interactions
journal, February 2014

  • Tsai, Charlie; Abild-Pedersen, Frank; Nørskov, Jens K.
  • Nano Letters, Vol. 14, Issue 3
  • DOI: 10.1021/nl404444k

Theoretical insights into the hydrogen evolution activity of layered transition metal dichalcogenides
journal, October 2015


Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts
journal, April 2010

  • Strasser, Peter; Koh, Shirlaine; Anniyev, Toyli
  • Nature Chemistry, Vol. 2, Issue 6
  • DOI: 10.1038/nchem.623

Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution
journal, July 2013

  • Voiry, Damien; Yamaguchi, Hisato; Li, Junwen
  • Nature Materials, Vol. 12, Issue 9
  • DOI: 10.1038/nmat3700

“Stretching” the energy landscape of oxides—Effects on electrocatalysis and diffusion
journal, February 2014


Optoelectronic crystal of artificial atoms in strain-textured molybdenum disulphide
journal, June 2015

  • Li, Hong; Contryman, Alex W.; Qian, Xiaofeng
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8381

Controlled argon beam-induced desulfurization of monolayer molybdenum disulfide
journal, May 2013


Building an appropriate active-site motif into a hydrogen-evolution catalyst with thiomolybdate [Mo3S13]2− clusters
journal, January 2014

  • Kibsgaard, Jakob; Jaramillo, Thomas F.; Besenbacher, Flemming
  • Nature Chemistry, Vol. 6, Issue 3
  • DOI: 10.1038/nchem.1853

Hydrogen Evolution on Supported Incomplete Cubane-type [Mo3S4]4+ Electrocatalysts
journal, November 2008

  • Jaramillo, Thomas F.; Bonde, Jacob; Zhang, Jingdong
  • The Journal of Physical Chemistry C, Vol. 112, Issue 45, p. 17492-17498
  • DOI: 10.1021/jp802695e

Self-Assembly of Subnanometer-Diameter Single-Wall MoS2 Nanotubes
journal, April 2001


Density functionals for surface science: Exchange-correlation model development with Bayesian error estimation
journal, June 2012


Influence of water on elementary reaction steps in electrocatalysis
journal, January 2009

  • Gohda, Yoshihiro; Schnur, Sebastian; Groß, Axel
  • Faraday Discuss., Vol. 140
  • DOI: 10.1039/B802270D

Kohn-Sham potential with discontinuity for band gap materials
journal, September 2010


Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers
journal, June 2013

  • Najmaei, Sina; Liu, Zheng; Zhou, Wu
  • Nature Materials, Vol. 12, Issue 8, p. 754-759
  • DOI: 10.1038/nmat3673

    Works referencing / citing this record:

    Defect engineering of molybdenum disulfide through ion irradiation to boost hydrogen evolution reaction performance
    journal, April 2019


    Doping-induced structural phase transition in cobalt diselenide enables enhanced hydrogen evolution catalysis
    journal, June 2018


    Lithiation-induced amorphization of Pd3P2S8 for highly efficient hydrogen evolution
    journal, May 2018


    Electrodeposition of amorphous molybdenum sulfide thin film for electrochemical hydrogen evolution reaction
    journal, July 2019


    MoS2 Coexisting in 1T and 2H Phases Synthesized by Common Hydrothermal Method for Hydrogen Evolution Reaction
    journal, June 2019


    Discovery of Superconductivity in 2M WS 2 with Possible Topological Surface States
    journal, June 2019


    Negative Charging of Transition‐Metal Phosphides via Strong Electronic Coupling for Destabilization of Alkaline Water
    journal, July 2019


    The Holy Grail in Platinum‐Free Electrocatalytic Hydrogen Evolution: Molybdenum‐Based Catalysts and Recent Advances
    journal, June 2019


    Engineering Two-Dimensional Materials and Their Heterostructures as High-Performance Electrocatalysts
    journal, May 2019


    Unconventional CN vacancies suppress iron-leaching in Prussian blue analogue pre-catalyst for boosted oxygen evolution catalysis
    journal, June 2019


    In-situ visualization of hydrogen evolution sites on helium ion treated molybdenum dichalcogenides under reaction conditions
    journal, July 2019

    • Mitterreiter, Elmar; Liang, Yunchang; Golibrzuch, Matthias
    • npj 2D Materials and Applications, Vol. 3, Issue 1
    • DOI: 10.1038/s41699-019-0107-5

    Microsecond charge separation at heterojunctions between transition metal dichalcogenide monolayers and single-walled carbon nanotubes
    journal, January 2019

    • Sulas-Kern, Dana B.; Zhang, Hanyu; Li, Zhaodong
    • Materials Horizons, Vol. 6, Issue 10
    • DOI: 10.1039/c9mh00954j

    Sensing behavior of flower-shaped MoS 2 nanoflakes: case study with methanol and xylene
    journal, January 2018

    • Barzegar, Maryam; Berahman, Masoud; Iraji zad, Azam
    • Beilstein Journal of Nanotechnology, Vol. 9
    • DOI: 10.3762/bjnano.9.57