skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Scaled experiments of explosions in cavities

Abstract

Consequences of an explosion inside an air-filled cavity under the earth's surface are partly duplicated in a laboratory experiment on spatial scales 1000 smaller. The experiment measures shock pressures coupled into a block of material by an explosion inside a gas-filled cavity therein. The explosion is generated by suddenly heating a thin foil that is located near the cavity center with a short laser pulse, which turns the foil into expanding plasma, most of whose energy drives a blast wave in the cavity gas. Variables in the experiment are the cavity radius and explosion energy. Measurements and GEODYN code simulations show that shock pressuresmeasured in the block exhibit a weak dependence on scaled cavity radius up to ~25 m/kt1/3, above which they decrease rapidly. Possible mechanisms giving rise to this behavior are described. As a result, the applicability of this work to validating codes used to simulate full-scale cavityexplosions is discussed.

Authors:
 [1];  [1];  [2];  [3];  [3];  [1];  [3];  [3]
  1. Naval Research Lab., Washington, D.C. (United States)
  2. Naval Research Lab., Washington, D.C. (United States); Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)
  3. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Publication Date:
Research Org.:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1256446
Report Number(s):
LLNL-JRNL-683997
Journal ID: ISSN 0021-8979; JAPIAU
Grant/Contract Number:  
AC52-07NA27344
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Applied Physics
Additional Journal Information:
Journal Volume: 119; Journal Issue: 18; Journal ID: ISSN 0021-8979
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 45 MILITARY TECHNOLOGY, WEAPONRY, AND NATIONAL DEFENSE; 58 GEOSCIENCES; 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; bubble dynamics; explosions; cavitation; laser resonators; pressure measurements

Citation Formats

Grun, J., Cranch, G. A., Lunsford, R., Compton, S., Walton, O. R., Weaver, J., Dunlop, W., and Fournier, K. B. Scaled experiments of explosions in cavities. United States: N. p., 2016. Web. doi:10.1063/1.4948952.
Grun, J., Cranch, G. A., Lunsford, R., Compton, S., Walton, O. R., Weaver, J., Dunlop, W., & Fournier, K. B. Scaled experiments of explosions in cavities. United States. doi:10.1063/1.4948952.
Grun, J., Cranch, G. A., Lunsford, R., Compton, S., Walton, O. R., Weaver, J., Dunlop, W., and Fournier, K. B. Wed . "Scaled experiments of explosions in cavities". United States. doi:10.1063/1.4948952. https://www.osti.gov/servlets/purl/1256446.
@article{osti_1256446,
title = {Scaled experiments of explosions in cavities},
author = {Grun, J. and Cranch, G. A. and Lunsford, R. and Compton, S. and Walton, O. R. and Weaver, J. and Dunlop, W. and Fournier, K. B.},
abstractNote = {Consequences of an explosion inside an air-filled cavity under the earth's surface are partly duplicated in a laboratory experiment on spatial scales 1000 smaller. The experiment measures shock pressures coupled into a block of material by an explosion inside a gas-filled cavity therein. The explosion is generated by suddenly heating a thin foil that is located near the cavity center with a short laser pulse, which turns the foil into expanding plasma, most of whose energy drives a blast wave in the cavity gas. Variables in the experiment are the cavity radius and explosion energy. Measurements and GEODYN code simulations show that shock pressuresmeasured in the block exhibit a weak dependence on scaled cavity radius up to ~25 m/kt1/3, above which they decrease rapidly. Possible mechanisms giving rise to this behavior are described. As a result, the applicability of this work to validating codes used to simulate full-scale cavityexplosions is discussed.},
doi = {10.1063/1.4948952},
journal = {Journal of Applied Physics},
number = 18,
volume = 119,
place = {United States},
year = {2016},
month = {5}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Save / Share:

Works referenced in this record:

A method of concealing underground nuclear explosions
journal, March 1961

  • Latter, A. L.; LeLevier, R. E.; Martinelli, E. A.
  • Journal of Geophysical Research, Vol. 66, Issue 3
  • DOI: 10.1029/JZ066i003p00943

Nuclear decoupling, full and partial
journal, July 1966


Comparing U.S. and Russian experience with cavity decoupling in salt
journal, May 1993

  • Glenn, L. A.
  • Geophysical Research Letters, Vol. 20, Issue 10
  • DOI: 10.1029/93GL00975

Characterization of laser-driven shock waves in solids using a fiber optic pressure probe
journal, January 2013

  • Cranch, Geoffrey A.; Lunsford, Robert; Grün, Jacob
  • Applied Optics, Vol. 52, Issue 32
  • DOI: 10.1364/AO.52.007791

Shock‐Wave Studies of PMMA, Fused Silica, and Sapphire
journal, September 1970

  • Barker, L. M.; Hollenbach, R. E.
  • Journal of Applied Physics, Vol. 41, Issue 10
  • DOI: 10.1063/1.1658439

Observation of high‐pressure blast‐wave decursors
journal, July 1991

  • Grun, J.; Stamper, J.; Manka, C.
  • Applied Physics Letters, Vol. 59, Issue 2
  • DOI: 10.1063/1.105980

Small-scale laboratory measurement and simulation of a thermal precursor shock
journal, March 1998

  • Grun, J.; Burris, R.; Joyce, G.
  • Journal of Applied Physics, Vol. 83, Issue 5
  • DOI: 10.1063/1.367001

Instability of Taylor-Sedov blast waves propagating through a uniform gas
journal, May 1991


Improved models for the dynamical overstability of radiative blast waves
journal, May 2003

  • Laming, J. Martin; Grun, Jacob
  • Physics of Plasmas, Vol. 10, Issue 5
  • DOI: 10.1063/1.1556603

A geophysical shock and air blast simulator at the National Ignition Facility
journal, September 2014

  • Fournier, K. B.; Brown, C. G.; May, M. J.
  • Review of Scientific Instruments, Vol. 85, Issue 9
  • DOI: 10.1063/1.4896119

High power laser and explosive driven shock wave characterization in solids using fiber optic probes
conference, September 2015

  • Cranch, G. A.; Grün, J.; Weaver, J.
  • International Conference on Optical Fibre Sensors (OFS24), SPIE Proceedings
  • DOI: 10.1117/12.2193907

A Fabry–Pérot fiber-optic ultrasonic hydrophone for the simultaneous measurement of temperature and acoustic pressure
journal, June 2009

  • Morris, Paul; Hurrell, Andrew; Shaw, Adam
  • The Journal of the Acoustical Society of America, Vol. 125, Issue 6
  • DOI: 10.1121/1.3117437

Numerical simulation of cloud rise phenomena associated with nuclear bursts
journal, October 2009


Seismic Scaling Law for Underground Explosions
journal, January 1959

  • Latter, A. L.; Martinelli, E. A.; Teller, E.
  • Physics of Fluids, Vol. 2, Issue 3
  • DOI: 10.1063/1.1705923

    Works referencing / citing this record:

    Shock‐Wave Studies of PMMA, Fused Silica, and Sapphire
    journal, September 1970

    • Barker, L. M.; Hollenbach, R. E.
    • Journal of Applied Physics, Vol. 41, Issue 10
    • DOI: 10.1063/1.1658439

    Dynamical Overstability of Radiative Blast Waves: The Atomic Physics of Shock Stability
    journal, August 2002


    Small-scale laboratory measurement and simulation of a thermal precursor shock
    journal, March 1998

    • Grun, J.; Burris, R.; Joyce, G.
    • Journal of Applied Physics, Vol. 83, Issue 5
    • DOI: 10.1063/1.367001

    Observation of high‐pressure blast‐wave decursors
    journal, July 1991

    • Grun, J.; Stamper, J.; Manka, C.
    • Applied Physics Letters, Vol. 59, Issue 2
    • DOI: 10.1063/1.105980

    High power laser and explosive driven shock wave characterization in solids using fiber optic probes
    conference, September 2015

    • Cranch, G. A.; Grün, J.; Weaver, J.
    • International Conference on Optical Fibre Sensors (OFS24), SPIE Proceedings
    • DOI: 10.1117/12.2193907

    A Fabry–Pérot fiber-optic ultrasonic hydrophone for the simultaneous measurement of temperature and acoustic pressure
    journal, June 2009

    • Morris, Paul; Hurrell, Andrew; Shaw, Adam
    • The Journal of the Acoustical Society of America, Vol. 125, Issue 6
    • DOI: 10.1121/1.3117437

    A case study of the seismic source function: Salmon and sterling reevaluated
    journal, January 1990

    • Denny, Marvin D.; Goodman, Dennis M.
    • Journal of Geophysical Research, Vol. 95, Issue B12
    • DOI: 10.1029/jb095ib12p19705

    A geophysical shock and air blast simulator at the National Ignition Facility
    journal, September 2014

    • Fournier, K. B.; Brown, C. G.; May, M. J.
    • Review of Scientific Instruments, Vol. 85, Issue 9
    • DOI: 10.1063/1.4896119

    Numerical simulation of cloud rise phenomena associated with nuclear bursts
    journal, October 2009


    Seismic Scaling Law for Underground Explosions
    journal, January 1959

    • Latter, A. L.; Martinelli, E. A.; Teller, E.
    • Physics of Fluids, Vol. 2, Issue 3
    • DOI: 10.1063/1.1705923

    Seismic efficiency of decoupled nuclear explosions
    journal, August 1993

    • Adushkin, Vitaly V.; Kitov, Ivan O.; Kuznetsov, O. P.
    • Geophysical Research Letters, Vol. 20, Issue 16
    • DOI: 10.1029/93gl00172

    Improved models for the dynamical overstability of radiative blast waves
    journal, May 2003

    • Laming, J. Martin; Grun, Jacob
    • Physics of Plasmas, Vol. 10, Issue 5
    • DOI: 10.1063/1.1556603