skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode

Abstract

Lithium metal is the ideal anode for the next generation of high-energy-density batteries. Nevertheless, dendrite growth, side reactions and infinite relative volume change have prevented it from practical applications. Here, we demonstrate a promising metallic lithium anode design by infusing molten lithium into a polymeric matrix. The electrospun polyimide employed is stable against highly reactive molten lithium and, via a conformal layer of zinc oxide coating to render the surface lithiophilic, molten lithium can be drawn into the matrix, affording a nano-porous lithium electrode. Importantly, the polymeric backbone enables uniform lithium stripping/plating, which successfully confines lithium within the matrix, realizing minimum volume change and effective dendrite suppression. The porous electrode reduces the effective current density; thus, flat voltage profiles and stable cycling of more than 100 cycles is achieved even at a high current density of 5 mA cm -2 in both carbonate and ether electrolyte. Furthermore, the advantages of the porous, polymeric matrix provide important insights into the design principles of lithium metal anodes.

Authors:
 [1];  [1];  [1];  [1];  [1];  [2]
  1. Stanford Univ., Stanford, CA (United States)
  2. Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1256050
Grant/Contract Number:  
AC02-76SF00515
Resource Type:
Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 7; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Liu, Yayuan, Lin, Dingchang, Liang, Zheng, Zhao, Jie, Yan, Kai, and Cui, Yi. Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode. United States: N. p., 2016. Web. doi:10.1038/ncomms10992.
Liu, Yayuan, Lin, Dingchang, Liang, Zheng, Zhao, Jie, Yan, Kai, & Cui, Yi. Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode. United States. doi:10.1038/ncomms10992.
Liu, Yayuan, Lin, Dingchang, Liang, Zheng, Zhao, Jie, Yan, Kai, and Cui, Yi. Fri . "Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode". United States. doi:10.1038/ncomms10992. https://www.osti.gov/servlets/purl/1256050.
@article{osti_1256050,
title = {Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode},
author = {Liu, Yayuan and Lin, Dingchang and Liang, Zheng and Zhao, Jie and Yan, Kai and Cui, Yi},
abstractNote = {Lithium metal is the ideal anode for the next generation of high-energy-density batteries. Nevertheless, dendrite growth, side reactions and infinite relative volume change have prevented it from practical applications. Here, we demonstrate a promising metallic lithium anode design by infusing molten lithium into a polymeric matrix. The electrospun polyimide employed is stable against highly reactive molten lithium and, via a conformal layer of zinc oxide coating to render the surface lithiophilic, molten lithium can be drawn into the matrix, affording a nano-porous lithium electrode. Importantly, the polymeric backbone enables uniform lithium stripping/plating, which successfully confines lithium within the matrix, realizing minimum volume change and effective dendrite suppression. The porous electrode reduces the effective current density; thus, flat voltage profiles and stable cycling of more than 100 cycles is achieved even at a high current density of 5 mA cm-2 in both carbonate and ether electrolyte. Furthermore, the advantages of the porous, polymeric matrix provide important insights into the design principles of lithium metal anodes.},
doi = {10.1038/ncomms10992},
journal = {Nature Communications},
number = ,
volume = 7,
place = {United States},
year = {2016},
month = {3}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 84 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Building better batteries
journal, February 2008

  • Armand, M.; Tarascon, J.-M.
  • Nature, Vol. 451, Issue 7179, p. 652-657
  • DOI: 10.1038/451652a

High-performance lithium battery anodes using silicon nanowires
journal, December 2007

  • Chan, Candace K.; Peng, Hailin; Liu, Gao
  • Nature Nanotechnology, Vol. 3, Issue 1, p. 31-35
  • DOI: 10.1038/nnano.2007.411

Li–O2 and Li–S batteries with high energy storage
journal, January 2012

  • Bruce, Peter G.; Freunberger, Stefan A.; Hardwick, Laurence J.
  • Nature Materials, Vol. 11, Issue 1, p. 19-29
  • DOI: 10.1038/nmat3191

Lithium metal anodes for rechargeable batteries
journal, January 2014

  • Xu, Wu; Wang, Jiulin; Ding, Fei
  • Energy Environ. Sci., Vol. 7, Issue 2
  • DOI: 10.1039/C3EE40795K

Metallic anodes for next generation secondary batteries
journal, January 2013

  • Kim, Hansu; Jeong, Goojin; Kim, Young-Ugk
  • Chemical Society Reviews, Vol. 42, Issue 23
  • DOI: 10.1039/c3cs60177c

Dendritic growth mechanisms in lithium/polymer cells
journal, September 1999


Micromorphological Studies of Lithium Electrodes in Alkyl Carbonate Solutions Using in Situ Atomic Force Microscopy
journal, December 2000

  • Cohen, Yaron S.; Cohen, Yair; Aurbach, Doron
  • The Journal of Physical Chemistry B, Vol. 104, Issue 51
  • DOI: 10.1021/jp002526b

The Correlation Between Surface Chemistry, Surface Morphology, and Cycling Efficiency of Lithium Electrodes in a Few Polar Aprotic Systems
journal, January 1989

  • Aurbach, Doron
  • Journal of The Electrochemical Society, Vol. 136, Issue 11
  • DOI: 10.1149/1.2096425

Lithium metal stripping/plating mechanisms studies: A metallurgical approach
journal, October 2006


In situ NMR observation of the formation of metallic lithium microstructures in lithium batteries
journal, May 2010

  • Bhattacharyya, Rangeet; Key, Baris; Chen, Hailong
  • Nature Materials, Vol. 9, Issue 6
  • DOI: 10.1038/nmat2764

7Li MRI of Li batteries reveals location of microstructural lithium
journal, February 2012

  • Chandrashekar, S.; Trease, Nicole M.; Chang, Hee Jung
  • Nature Materials, Vol. 11, Issue 4
  • DOI: 10.1038/nmat3246

A lithium superionic conductor
journal, July 2011

  • Kamaya, Noriaki; Homma, Kenji; Yamakawa, Yuichiro
  • Nature Materials, Vol. 10, Issue 9, p. 682-686
  • DOI: 10.1038/nmat3066

Fast Lithium Ion Conduction in Garnet-Type Li7La3Zr2O12
journal, October 2007

  • Murugan, Ramaswamy; Thangadurai, Venkataraman; Weppner, Werner
  • Angewandte Chemie International Edition, Vol. 46, Issue 41, p. 7778-7781
  • DOI: 10.1002/anie.200701144

Solid Electrolyte: the Key for High-Voltage Lithium Batteries
journal, October 2014

  • Li, Juchuan; Ma, Cheng; Chi, Miaofang
  • Advanced Energy Materials, Vol. 5, Issue 4
  • DOI: 10.1002/aenm.201401408

Nanocomposite polymer electrolytes and their impact on the lithium battery technology
journal, November 2000


Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries
journal, March 2013

  • Bouchet, Renaud; Maria, Sébastien; Meziane, Rachid
  • Nature Materials, Vol. 12, Issue 5
  • DOI: 10.1038/nmat3602

Characterization of the interface between LiCoO2 and Li7La3Zr2O12 in an all-solid-state rechargeable lithium battery
journal, January 2011


Electrolytes and Interphases in Li-Ion Batteries and Beyond
journal, October 2014


The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth
journal, June 2015

  • Li, Weiyang; Yao, Hongbin; Yan, Kai
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8436

Stable lithium electrodeposition in liquid and nanoporous solid electrolytes
journal, August 2014

  • Lu, Yingying; Tu, Zhengyuan; Archer, Lynden A.
  • Nature Materials, Vol. 13, Issue 10
  • DOI: 10.1038/nmat4041

High rate and stable cycling of lithium metal anode
journal, February 2015

  • Qian, Jiangfeng; Henderson, Wesley A.; Xu, Wu
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7362

A new class of Solvent-in-Salt electrolyte for high-energy rechargeable metallic lithium batteries
journal, February 2013

  • Suo, Liumin; Hu, Yong-Sheng; Li, Hong
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms2513

Dendrite-Free Lithium Deposition via Self-Healing Electrostatic Shield Mechanism
journal, March 2013

  • Ding, Fei; Xu, Wu; Graff, Gordon L.
  • Journal of the American Chemical Society, Vol. 135, Issue 11, p. 4450-4456
  • DOI: 10.1021/ja312241y

Protection of lithium metal surfaces using tetraethoxysilane
journal, January 2011

  • Umeda, Grant A.; Menke, Erik; Richard, Monique
  • J. Mater. Chem., Vol. 21, Issue 5
  • DOI: 10.1039/C0JM02305A

In situ scanning vibrating electrode technique for lithium metal anodes
journal, October 1997


Improved Cycling Stability of Lithium Electrodes in Rechargeable Lithium Batteries
journal, October 2013

  • Kang, Ik Su; Lee, Yoon-Sung; Kim, Dong-Won
  • Journal of The Electrochemical Society, Vol. 161, Issue 1
  • DOI: 10.1149/2.029401jes

Spatially heterogeneous carbon-fiber papers as surface dendrite-free current collectors for lithium deposition
journal, February 2012


Excellent Cycle Life of Lithium-Metal Anodes in Lithium-Ion Batteries with Mussel-Inspired Polydopamine-Coated Separators
journal, April 2012

  • Ryou, Myung-Hyun; Lee, Dong Jin; Lee, Je-Nam
  • Advanced Energy Materials, Vol. 2, Issue 6
  • DOI: 10.1002/aenm.201100687

Next-Generation Lithium Metal Anode Engineering via Atomic Layer Deposition
journal, May 2015


Interconnected hollow carbon nanospheres for stable lithium metal anodes
journal, July 2014

  • Zheng, Guangyuan; Lee, Seok Woo; Liang, Zheng
  • Nature Nanotechnology, Vol. 9, Issue 8
  • DOI: 10.1038/nnano.2014.152

Ultrathin Two-Dimensional Atomic Crystals as Stable Interfacial Layer for Improvement of Lithium Metal Anode
journal, September 2014

  • Yan, Kai; Lee, Hyun-Wook; Gao, Teng
  • Nano Letters, Vol. 14, Issue 10
  • DOI: 10.1021/nl503125u

Polymer Nanofiber-Guided Uniform Lithium Deposition for Battery Electrodes
journal, April 2015

  • Liang, Zheng; Zheng, Guangyuan; Liu, Chong
  • Nano Letters, Vol. 15, Issue 5
  • DOI: 10.1021/nl5046318

Coated Lithium Powder (CLiP) Electrodes for Lithium-Metal Batteries
journal, November 2013

  • Heine, Jennifer; Krüger, Steffen; Hartnig, Christoph
  • Advanced Energy Materials, Vol. 4, Issue 5
  • DOI: 10.1002/aenm.201300815

Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes
journal, August 2015

  • Yang, Chun-Peng; Yin, Ya-Xia; Zhang, Shuai-Feng
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9058

The Electrochemical Reaction of Zinc Oxide Thin Films with Lithium
journal, January 2003

  • Fu, Zheng-Wen; Huang, Feng; Zhang, Ye
  • Journal of The Electrochemical Society, Vol. 150, Issue 6
  • DOI: 10.1149/1.1570410

High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications
journal, June 2006

  • Taberna, P. L.; Mitra, S.; Poizot, P.
  • Nature Materials, Vol. 5, Issue 7, p. 567-573
  • DOI: 10.1038/nmat1672

Particle Size Effects on the Electrochemical Performance of Copper Oxides toward Lithium
journal, January 2001

  • Grugeon, S.; Laruelle, S.; Herrera-Urbina, R.
  • Journal of The Electrochemical Society, Vol. 148, Issue 4
  • DOI: 10.1149/1.1353566

Synthesis and characterization of a novel carboxyl group containing (co)polyimide with sulfur in the polymer backbone
journal, January 2012

  • Mrsevic, Miroslav; Düsselberg, David; Staudt, Claudia
  • Beilstein Journal of Organic Chemistry, Vol. 8
  • DOI: 10.3762/bjoc.8.88

The electrochemical behaviour of 1,3-dioxolane—LiClO4 solutions—I. Uncontaminated solutions
journal, March 1990


Electrochemical in situ investigations of SEI and dendrite formation on the lithium metal anode
journal, January 2015

  • Bieker, Georg; Winter, Martin; Bieker, Peter
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 14
  • DOI: 10.1039/C4CP05865H

Electrochemical Behavior of Compacted Lithium Powder Electrode in Li/V[sub 2]O[sub 5] Rechargeable Battery
journal, January 2010

  • Kim, Jin Suk; Baek, Se hoon; Yoon, Woo Young
  • Journal of The Electrochemical Society, Vol. 157, Issue 8
  • DOI: 10.1149/1.3457381

    Works referencing / citing this record:

    Towards high energy density lithium battery anodes: silicon and lithium
    journal, January 2019

    • Zhu, Bin; Wang, Xinyu; Yao, Pengcheng
    • Chemical Science, Vol. 10, Issue 30
    • DOI: 10.1039/c9sc01201j