DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Asymmetric pathways in the electrochemical conversion reaction of NiO as battery electrode with high storage capacity

Abstract

Electrochemical conversion reactions of transition metal compounds create opportunities for large energy storage capabilities exceeding modern Li-ion batteries. However, for practical electrodes to be envisaged, a detailed understanding of their mechanisms is needed, especially vis-à-vis the voltage hysteresis observed between reduction and oxidation. Here, we present such insight at scales from local atomic arrangements to whole electrodes. NiO was chosen as a simple model system. The most important finding is that the voltage hysteresis has its origin in the differing chemical pathways during reduction and oxidation. This asymmetry is enabled by the presence of small metallic clusters and, thus, is likely to apply to other transition metal oxide systems. Lastly, the presence of nanoparticles also influences the electrochemical activity of the electrolyte and its degradation products and can create differences in transport properties within an electrode, resulting in localized reactions around converted domains that lead to compositional inhomogeneities at the microscale.

Authors:
 [1];  [2];  [3];  [4];  [5];  [6];  [7];  [5];  [8]
  1. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
  2. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS)
  3. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  4. Univ. of Illinois, Chicago, IL (United States)
  5. Univ. of Saskatchewan, Saskatoon, SK (Canada)
  6. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Nanyang Technological Univ. (Singapore)
  7. Nanyang Technological Univ. (Singapore)
  8. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of Illinois, Chicago, IL (United States)
Publication Date:
Research Org.:
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office (EE-3V)
OSTI Identifier:
1256044
Grant/Contract Number:  
AC02-05CH11231; AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Scientific Reports
Additional Journal Information:
Journal Volume: 4; Journal ID: ISSN 2045-2322
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE

Citation Formats

Boesenberg, Ulrike, Marcus, Matthew A., Shukla, Alpesh K., Yi, Tanghong, McDermott, Eamon, Teh, Pei Fen, Srinivasan, Madhavi, Moewes, Alexander, and Cabana, Jordi. Asymmetric pathways in the electrochemical conversion reaction of NiO as battery electrode with high storage capacity. United States: N. p., 2014. Web. doi:10.1038/srep07133.
Boesenberg, Ulrike, Marcus, Matthew A., Shukla, Alpesh K., Yi, Tanghong, McDermott, Eamon, Teh, Pei Fen, Srinivasan, Madhavi, Moewes, Alexander, & Cabana, Jordi. Asymmetric pathways in the electrochemical conversion reaction of NiO as battery electrode with high storage capacity. United States. https://doi.org/10.1038/srep07133
Boesenberg, Ulrike, Marcus, Matthew A., Shukla, Alpesh K., Yi, Tanghong, McDermott, Eamon, Teh, Pei Fen, Srinivasan, Madhavi, Moewes, Alexander, and Cabana, Jordi. Thu . "Asymmetric pathways in the electrochemical conversion reaction of NiO as battery electrode with high storage capacity". United States. https://doi.org/10.1038/srep07133. https://www.osti.gov/servlets/purl/1256044.
@article{osti_1256044,
title = {Asymmetric pathways in the electrochemical conversion reaction of NiO as battery electrode with high storage capacity},
author = {Boesenberg, Ulrike and Marcus, Matthew A. and Shukla, Alpesh K. and Yi, Tanghong and McDermott, Eamon and Teh, Pei Fen and Srinivasan, Madhavi and Moewes, Alexander and Cabana, Jordi},
abstractNote = {Electrochemical conversion reactions of transition metal compounds create opportunities for large energy storage capabilities exceeding modern Li-ion batteries. However, for practical electrodes to be envisaged, a detailed understanding of their mechanisms is needed, especially vis-à-vis the voltage hysteresis observed between reduction and oxidation. Here, we present such insight at scales from local atomic arrangements to whole electrodes. NiO was chosen as a simple model system. The most important finding is that the voltage hysteresis has its origin in the differing chemical pathways during reduction and oxidation. This asymmetry is enabled by the presence of small metallic clusters and, thus, is likely to apply to other transition metal oxide systems. Lastly, the presence of nanoparticles also influences the electrochemical activity of the electrolyte and its degradation products and can create differences in transport properties within an electrode, resulting in localized reactions around converted domains that lead to compositional inhomogeneities at the microscale.},
doi = {10.1038/srep07133},
journal = {Scientific Reports},
number = ,
volume = 4,
place = {United States},
year = {Thu Nov 20 00:00:00 EST 2014},
month = {Thu Nov 20 00:00:00 EST 2014}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 46 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

The road from animal electricity to green energy: combining experiment and theory in electrocatalysis
journal, January 2012

  • Greeley, Jeffrey; Markovic, Nenad M.
  • Energy & Environmental Science, Vol. 5, Issue 11
  • DOI: 10.1039/c2ee21754f

Redox flow batteries a review
journal, September 2011

  • Weber, Adam Z.; Mench, Matthew M.; Meyers, Jeremy P.
  • Journal of Applied Electrochemistry, Vol. 41, Issue 10, p. 1137-1164
  • DOI: 10.1007/s10800-011-0348-2

Building better batteries
journal, February 2008

  • Armand, M.; Tarascon, J.-M.
  • Nature, Vol. 451, Issue 7179, p. 652-657
  • DOI: 10.1038/451652a

Recent findings and prospects in the field of pure metals as negative electrodes for Li-ion batteries
journal, January 2007

  • Larcher, Dominique; Beattie, Shane; Morcrette, Mathieu
  • Journal of Materials Chemistry, Vol. 17, Issue 36
  • DOI: 10.1039/b705421c

Beyond Intercalation-Based Li-Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions
journal, August 2010

  • Cabana, Jordi; Monconduit, Laure; Larcher, Dominique
  • Advanced Materials, Vol. 22, Issue 35
  • DOI: 10.1002/adma.201000717

Li–O2 and Li–S batteries with high energy storage
journal, January 2012

  • Bruce, Peter G.; Freunberger, Stefan A.; Hardwick, Laurence J.
  • Nature Materials, Vol. 11, Issue 1, p. 19-29
  • DOI: 10.1038/nmat3191

A comprehensive understanding of electrode thickness effects on the electrochemical performances of Li-ion battery cathodes
journal, June 2012


Tracking lithium transport and electrochemical reactions in nanoparticles
journal, January 2012

  • Wang, Feng; Yu, Hui-Chia; Chen, Min-Hua
  • Nature Communications, Vol. 3, Issue 1
  • DOI: 10.1038/ncomms2185

Electrochemical lithiation synthesis of nanoporous materials with superior catalytic and capacitive activity
journal, August 2006

  • Hu, Yong-Sheng; Guo, Yu-Guo; Sigle, Wilfried
  • Nature Materials, Vol. 5, Issue 9
  • DOI: 10.1038/nmat1709

First-Principles Investigation of the Li−Fe−F Phase Diagram and Equilibrium and Nonequilibrium Conversion Reactions of Iron Fluorides with Lithium
journal, August 2008

  • Doe, Robert E.; Persson, Kristin A.; Meng, Y. Shirley
  • Chemistry of Materials, Vol. 20, Issue 16
  • DOI: 10.1021/cm801105p

Formation, dynamics, and implication of solid electrolyte interphase in high voltage reversible conversion fluoride nanocomposites
journal, January 2010

  • Gmitter, Andrew J.; Badway, Fadwa; Rangan, Sylvie
  • Journal of Materials Chemistry, Vol. 20, Issue 20
  • DOI: 10.1039/b923908a

On the Origin of the Extra Electrochemical Capacity Displayed by MO/Li Cells at Low Potential
journal, January 2002

  • Laruelle, S.; Grugeon, S.; Poizot, P.
  • Journal of The Electrochemical Society, Vol. 149, Issue 5, p. A627-A634
  • DOI: 10.1149/1.1467947

Electroanalytical study of the viability of conversion reactions as energy storage mechanisms
journal, January 2014

  • Ponrouch, Alexandre; Cabana, Jordi; Dugas, Romain
  • RSC Adv., Vol. 4, Issue 68
  • DOI: 10.1039/C4RA05189K

In operando X-ray studies of the conversion reaction in Mn 3 O 4 lithium battery anodes
journal, January 2013

  • Lowe, Michael A.; Gao, Jie; Abruña, Héctor D.
  • J. Mater. Chem. A, Vol. 1, Issue 6
  • DOI: 10.1039/C2TA01270G

First Principles Study of the Li–Bi–F Phase Diagram and Bismuth Fluoride Conversion Reactions with Lithium
journal, January 2009

  • Doe, Robert E.; Persson, Kristin A.; Hautier, Geoffroy
  • Electrochemical and Solid-State Letters, Vol. 12, Issue 7
  • DOI: 10.1149/1.3117249

Formation and Oxidation of Nanosized Metal Particles by Electrochemical Reaction of Li and Na with NiCo 2 O 4 :  X-ray Absorption Spectroscopic Study
journal, March 2007

  • Chadwick, Alan V.; Savin, Shelley L. P.; Fiddy, Steven
  • The Journal of Physical Chemistry C, Vol. 111, Issue 12
  • DOI: 10.1021/jp066417u

Local Structural Characterization for Electrochemical Insertion−Extraction of Lithium into CoO with X-ray Absorption Spectroscopy
journal, September 2002

  • Choi, Hyun Chul; Lee, Sang Yun; Kim, Seung Bin
  • The Journal of Physical Chemistry B, Vol. 106, Issue 36
  • DOI: 10.1021/jp0205968

Investigation on porous MnO microsphere anode for lithium ion batteries
journal, August 2011


Ein neues Oxoniccolat: Li2NiO2
journal, October 1972

  • Rieck, H.; Hoppe, R.
  • Zeitschrift f�r anorganische und allgemeine Chemie, Vol. 392, Issue 3
  • DOI: 10.1002/zaac.19723920302

Highly ordered mesoporous NiO anode material for lithium ion batteries with an excellent electrochemical performance
journal, January 2011

  • Liu, Hao; Wang, Guoxiu; Liu, Jian
  • Journal of Materials Chemistry, Vol. 21, Issue 9
  • DOI: 10.1039/c0jm03132a

Complexation of uranium(VI) with protocatechuic acid?application of iterative transformation factor analysis to EXAFS spectroscopy
journal, July 2003

  • Ro�berg, A.; Reich, T.; Bernhard, G.
  • Analytical and Bioanalytical Chemistry, Vol. 376, Issue 5
  • DOI: 10.1007/s00216-003-1963-5

On the origin of the extra capacity at low potential in materials for Li batteries reacting through conversion reaction
journal, February 2012


X-Ray Interactions: Photoabsorption, Scattering, Transmission, and Reflection at E = 50-30,000 eV, Z = 1-92
journal, July 1993

  • Henke, B. L.; Gullikson, E. M.; Davis, J. C.
  • Atomic Data and Nuclear Data Tables, Vol. 54, Issue 2, p. 181-342
  • DOI: 10.1006/adnd.1993.1013

Probing NiO nanocrystals by EXAFS spectroscopy
journal, December 2010


X-Ray Determination of Electron-Density Distributions in Oxides, MgO, MnO, CoO, and NiO, and Atomic Scattering Factors of their Constituent Atoms
journal, January 1979

  • Sasaki, Satoshi; Fujino, Kiyoshi; TakÉUchi, Yoshio
  • Proceedings of the Japan Academy. Ser. B: Physical and Biological Sciences, Vol. 55, Issue 2
  • DOI: 10.2183/pjab.55.43

Structural and Mechanistic Revelations on an Iron Conversion Reaction from Pair Distribution Function Analysis
journal, April 2012

  • Shyam, Badri; Chapman, Karena W.; Balasubramanian, Mahalingam
  • Angewandte Chemie International Edition, Vol. 51, Issue 20
  • DOI: 10.1002/anie.201200244

The effect of gold particle size on AuAu bond length and reactivity toward oxygen in supported catalysts
journal, June 2006


Determination of crystallite size in a magnetic nanocomposite using extended x-ray absorption fine structure
journal, July 2003

  • Calvin, S.; Miller, M. M.; Goswami, R.
  • Journal of Applied Physics, Vol. 94, Issue 1
  • DOI: 10.1063/1.1581344

Unintended Phosphorus Doping of Nickel Nanoparticles during Synthesis with TOP: A Discovery through Structural Analysis
journal, January 2012

  • Moreau, Liane M.; Ha, Don-Hyung; Bealing, Clive R.
  • Nano Letters, Vol. 12, Issue 9
  • DOI: 10.1021/nl301642g

Electron Tomography Analysis of Reaction Path during Formation of Nanoporous NiO by Solid State Decomposition
journal, March 2014

  • Shukla, A. K.; Ercius, P.; Gautam, A. R. S.
  • Crystal Growth & Design, Vol. 14, Issue 5
  • DOI: 10.1021/cg5001649

Ordering of Nitrogen in Nickel Nitride Ni 3 N Determined by Neutron Diffraction
journal, November 2001

  • Leineweber, Andreas; Jacobs, Herbert; Hull, Steve
  • Inorganic Chemistry, Vol. 40, Issue 23
  • DOI: 10.1021/ic0104860

Deciphering the Structural Transformations during Nickel Oxyhydroxide Electrode Operation
journal, May 2007

  • Casas-Cabanas, Montse; Canales-Vázquez, Jesús; Rodríguez-Carvajal, Juan
  • Journal of the American Chemical Society, Vol. 129, Issue 18
  • DOI: 10.1021/ja068433a

Nickel K-edge x-ray absorption fine structure of lithium nickel oxides
journal, May 1993

  • Pickering, Ingrid J.; George, Graham N.; Lewandowski, Joseph T.
  • Journal of the American Chemical Society, Vol. 115, Issue 10
  • DOI: 10.1021/ja00063a035

Phase diagram of oxygen chemisorbed on nickel (111)
journal, June 1981


The Effects of Oxygen Adsorption on the k X-Ray Absorption edge of Alumina Supported Nickel
journal, September 1960


Subsurface diffusion of oxide electrolyte decomposition products in metal fluoride nanocomposite electrodes
journal, January 2013


Enhanced Potential of Amorphous Electrode Materials: Case Study of RuO2
journal, February 2008


The Ni−O (Nickel-Oxygen) system
journal, April 1984

  • Neumann, J. P.; Zhong, T.; Chang, Y. A.
  • Bulletin of Alloy Phase Diagrams, Vol. 5, Issue 2
  • DOI: 10.1007/BF02868949

First-principles calculations of the diffusion of atomic oxygen in nickel: thermal expansion contribution
journal, July 2007


Water-driven structure transformation in nanoparticles at room temperature
journal, August 2003

  • Zhang, Hengzhong; Gilbert, Benjamin; Huang, Feng
  • Nature, Vol. 424, Issue 6952
  • DOI: 10.1038/nature01845

Nanoparticles: Strained and Stiff
journal, July 2004


Conversion Reaction Mechanisms in Lithium Ion Batteries: Study of the Binary Metal Fluoride Electrodes
journal, November 2011

  • Wang, Feng; Robert, Rosa; Chernova, Natasha A.
  • Journal of the American Chemical Society, Vol. 133, Issue 46
  • DOI: 10.1021/ja206268a

Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries
journal, September 2000

  • Poizot, P.; Laruelle, S.; Grugeon, S.
  • Nature, Vol. 407, Issue 6803, p. 496-499
  • DOI: 10.1038/35035045

Vacancy Mechanism of High Oxygen Solubility and Nucleation of Stable Oxygen-Enriched Clusters in Fe
journal, November 2007


In Situ Spectroscopic Study of the Oxidation and Reduction of Pd(111)
journal, December 2005

  • Ketteler, Guido; Ogletree, D. Frank; Bluhm, Hendrik
  • Journal of the American Chemical Society, Vol. 127, Issue 51
  • DOI: 10.1021/ja055754y

In Situ Measurements of Li Ion Battery Electrode Material Conductivity:  Application to Li x CoO 2 and Conversion Reactions
journal, July 2007

  • Sauvage, F.; Tarascon, J-M.; Baudrin, E.
  • The Journal of Physical Chemistry C, Vol. 111, Issue 26
  • DOI: 10.1021/jp0720035

Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride
journal, September 2000

  • Fray, Derek J.; Chen, George Zheng; Farthing, Tom W.
  • Nature, Vol. 407, Issue 6802, p. 361-364
  • DOI: 10.1038/35030069

Challenges in the development of advanced Li-ion batteries: a review
journal, January 2011

  • Etacheri, Vinodkumar; Marom, Rotem; Elazari, Ran
  • Energy & Environmental Science, Vol. 4, Issue 9
  • DOI: 10.1039/c1ee01598b

Room-temperature miscibility gap in LixFePO4
journal, April 2006

  • Yamada, Atsuo; Koizumi, Hiroshi; Nishimura, Shin-ichi
  • Nature Materials, Vol. 5, Issue 5
  • DOI: 10.1038/nmat1634

Nanophase Transition Metal Oxides Show Large Thermodynamically Driven Shifts in Oxidation-Reduction Equilibria
journal, October 2010

  • Navrotsky, Alexandra; Ma, Chengcheng; Lilova, Kristina
  • Science, Vol. 330, Issue 6001
  • DOI: 10.1126/science.1195875

P2-NaxVO2 system as electrodes for batteries and electron-correlated materials
journal, November 2012

  • Guignard, Marie; Didier, Christophe; Darriet, Jacques
  • Nature Materials, Vol. 12, Issue 1
  • DOI: 10.1038/nmat3478

X-ray photon-in/photon-out methods for chemical imaging
journal, June 2010


Analysis of multiple-scattering XAFS data using theoretical standards
journal, March 1995


VLS-PGM Beamline at the Canadian Light Source
conference, January 2007

  • Hu, Y. F.; Zuin, L.; Reininger, R.
  • SYNCHROTRON RADIATION INSTRUMENTATION: Ninth International Conference on Synchrotron Radiation Instrumentation, AIP Conference Proceedings
  • DOI: 10.1063/1.2436116

Enhanced Potential of Amorphous Electrode Materials: Case Study of RuO2
journal, February 2008


Beyond Intercalation-Based Li-Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions
journal, August 2010

  • Cabana, Jordi; Monconduit, Laure; Larcher, Dominique
  • Advanced Materials, Vol. 22, Issue 35
  • DOI: 10.1002/adma.201000717

Structural and Mechanistic Revelations on an Iron Conversion Reaction from Pair Distribution Function Analysis
journal, April 2012

  • Shyam, Badri; Chapman, Karena W.; Balasubramanian, Mahalingam
  • Angewandte Chemie, Vol. 124, Issue 20
  • DOI: 10.1002/ange.201200244

Complexation of uranium(VI) with protocatechuic acid?application of iterative transformation factor analysis to EXAFS spectroscopy
journal, July 2003

  • Ro�berg, A.; Reich, T.; Bernhard, G.
  • Analytical and Bioanalytical Chemistry, Vol. 376, Issue 5
  • DOI: 10.1007/s00216-003-1963-5

Redox flow batteries a review
journal, September 2011

  • Weber, Adam Z.; Mench, Matthew M.; Meyers, Jeremy P.
  • Journal of Applied Electrochemistry, Vol. 41, Issue 10, p. 1137-1164
  • DOI: 10.1007/s10800-011-0348-2

Ordering of Nitrogen in Nickel Nitride Ni 3 N Determined by Neutron Diffraction
journal, November 2001

  • Leineweber, Andreas; Jacobs, Herbert; Hull, Steve
  • Inorganic Chemistry, Vol. 40, Issue 23
  • DOI: 10.1021/ic0104860

In Situ Spectroscopic Study of the Oxidation and Reduction of Pd(111)
journal, December 2005

  • Ketteler, Guido; Ogletree, D. Frank; Bluhm, Hendrik
  • Journal of the American Chemical Society, Vol. 127, Issue 51
  • DOI: 10.1021/ja055754y

Deciphering the Structural Transformations during Nickel Oxyhydroxide Electrode Operation
journal, May 2007

  • Casas-Cabanas, Montse; Canales-Vázquez, Jesús; Rodríguez-Carvajal, Juan
  • Journal of the American Chemical Society, Vol. 129, Issue 18
  • DOI: 10.1021/ja068433a

Unintended Phosphorus Doping of Nickel Nanoparticles during Synthesis with TOP: A Discovery through Structural Analysis
journal, January 2012

  • Moreau, Liane M.; Ha, Don-Hyung; Bealing, Clive R.
  • Nano Letters, Vol. 12, Issue 9
  • DOI: 10.1021/nl301642g

Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride
journal, September 2000

  • Fray, Derek J.; Chen, George Zheng; Farthing, Tom W.
  • Nature, Vol. 407, Issue 6802, p. 361-364
  • DOI: 10.1038/35030069

Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries
journal, September 2000

  • Poizot, P.; Laruelle, S.; Grugeon, S.
  • Nature, Vol. 407, Issue 6803, p. 496-499
  • DOI: 10.1038/35035045

Building better batteries
journal, February 2008

  • Armand, M.; Tarascon, J.-M.
  • Nature, Vol. 451, Issue 7179, p. 652-657
  • DOI: 10.1038/451652a

Tracking lithium transport and electrochemical reactions in nanoparticles
journal, January 2012

  • Wang, Feng; Yu, Hui-Chia; Chen, Min-Hua
  • Nature Communications, Vol. 3, Issue 1
  • DOI: 10.1038/ncomms2185

Room-temperature miscibility gap in LixFePO4
journal, April 2006

  • Yamada, Atsuo; Koizumi, Hiroshi; Nishimura, Shin-ichi
  • Nature Materials, Vol. 5, Issue 5
  • DOI: 10.1038/nmat1634

Electrochemical lithiation synthesis of nanoporous materials with superior catalytic and capacitive activity
journal, August 2006

  • Hu, Yong-Sheng; Guo, Yu-Guo; Sigle, Wilfried
  • Nature Materials, Vol. 5, Issue 9
  • DOI: 10.1038/nmat1709

Li–O2 and Li–S batteries with high energy storage
journal, January 2012

  • Bruce, Peter G.; Freunberger, Stefan A.; Hardwick, Laurence J.
  • Nature Materials, Vol. 11, Issue 1, p. 19-29
  • DOI: 10.1038/nmat3191

P2-NaxVO2 system as electrodes for batteries and electron-correlated materials
journal, November 2012

  • Guignard, Marie; Didier, Christophe; Darriet, Jacques
  • Nature Materials, Vol. 12, Issue 1
  • DOI: 10.1038/nmat3478

The road from animal electricity to green energy: combining experiment and theory in electrocatalysis
journal, January 2012

  • Greeley, Jeffrey; Markovic, Nenad M.
  • Energy & Environmental Science, Vol. 5, Issue 11
  • DOI: 10.1039/c2ee21754f

VLS-PGM Beamline at the Canadian Light Source
conference, January 2007

  • Hu, Y. F.; Zuin, L.; Reininger, R.
  • SYNCHROTRON RADIATION INSTRUMENTATION: Ninth International Conference on Synchrotron Radiation Instrumentation, AIP Conference Proceedings
  • DOI: 10.1063/1.2436116

First-principles calculations of the diffusion of atomic oxygen in nickel: thermal expansion contribution
journal, July 2007


Self-Limited Growth of a Thin Oxide Layer on Rh(111)
journal, March 2004


A furnace and environmental cell for the in situ investigation of molten salt electrolysis using high-energy X-ray diffraction
journal, November 2011

  • Styles, Mark J.; Rowles, Matthew R.; Madsen, Ian C.
  • Journal of Synchrotron Radiation, Vol. 19, Issue 1
  • DOI: 10.1107/s0909049511039124

Nanoparticles: Strained and Stiff
journal, July 2004


Nanophase Transition Metal Oxides Show Large Thermodynamically Driven Shifts in Oxidation-Reduction Equilibria
journal, October 2010

  • Navrotsky, Alexandra; Ma, Chengcheng; Lilova, Kristina
  • Science, Vol. 330, Issue 6001
  • DOI: 10.1126/science.1195875

Study of Metallic Carbides by Electron Diffraction Part II. Crystal Structure Analysis of Nickel Carbide
journal, September 1958

  • Nagakura, Sigemaro
  • Journal of the Physical Society of Japan, Vol. 13, Issue 9
  • DOI: 10.1143/jpsj.13.1005

Works referencing / citing this record:

Transition Metal Oxide Anodes for Electrochemical Energy Storage in Lithium‐ and Sodium‐Ion Batteries
journal, November 2019

  • Fang, Shan; Bresser, Dominic; Passerini, Stefano
  • Advanced Energy Materials, Vol. 10, Issue 1
  • DOI: 10.1002/aenm.201902485

A critical review-promises and barriers of conversion electrodes for Li-ion batteries
journal, April 2017

  • Kraytsberg, Alexander; Ein-Eli, Yair
  • Journal of Solid State Electrochemistry, Vol. 21, Issue 7
  • DOI: 10.1007/s10008-017-3580-9

Nickel oxide nanocrystals as a lithium-ion battery anode: structure-performance relationship
journal, April 2016

  • Khalil, Abdullah; Lalia, Boor Singh; Hashaikeh, Raed
  • Journal of Materials Science, Vol. 51, Issue 14
  • DOI: 10.1007/s10853-016-9946-z

Pushing the theoretical capacity limits of iron oxide anodes: capacity rise of γ-Fe 2 O 3 nanoparticles in lithium-ion batteries
journal, January 2016

  • Tang, Jialiang; Zavala Lugo, Claudia Edith; Acuña Guzmán, Salvador Francisco
  • Journal of Materials Chemistry A, Vol. 4, Issue 46
  • DOI: 10.1039/c6ta08139h

Facile synthesis of perovskite CeMnO 3 nanofibers as an anode material for high performance lithium-ion batteries
journal, January 2019


Probing the Reversibility of Silicon Monoxide Electrodes for Lithium-Ion Batteries
journal, December 2018

  • Tan, Tian; Lee, Pui-Kit; Yu, Denis Y. W.
  • Journal of The Electrochemical Society, Vol. 166, Issue 3
  • DOI: 10.1149/2.0321903jes

Transition Metal Oxide Anodes for Electrochemical Energy Storage in Lithium‐ and Sodium‐Ion Batteries
text, January 2020