skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: In situ microscopy of the self-assembly of branched nanocrystals in solution

Abstract

Here, solution-phase self-assembly of nanocrystals into mesoscale structures is a promising strategy for constructing functional materials from nanoscale components. Liquid environments are key to self-assembly since they allow suspended nanocrystals to diffuse and interact freely, but they also complicate experiments. Real-time observations with single-particle resolution could have transformative impact on our understanding of nanocrystal self-assembly. Here we use real-time in situ imaging by liquid-cell electron microscopy to elucidate the nucleation and growth mechanism and properties of linear chains of octapod-shaped nanocrystals in their native solution environment. Statistical mechanics modelling based on these observations and using the measured chain-length distribution clarifies the relative importance of dipolar and entropic forces in the assembly process and gives direct access to the interparticle interaction. Our results suggest that monomer-resolved in situ imaging combined with modelling can provide unprecedented quantitative insight into the microscopic processes and interactions that govern nanocrystal self-assembly in solution.

Authors:
 [1];  [2];  [1]; ;  [3];  [3];  [4]
  1. Univ. of Nebraska-Lincoln, Lincoln, NE (United States)
  2. Brookhaven National Lab. (BNL), Upton, NY (United States)
  3. Istituto Italiano di Tecnologia (IIT), Genova (Italy)
  4. Univ. of Stuttgart, Stuttgart (Germany)
Publication Date:
Research Org.:
Brookhaven National Lab. (BNL), Upton, NY (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1255732
Report Number(s):
BNL-112268-2016-JA
Journal ID: ISSN 2041-1723; KC0403020
Grant/Contract Number:  
SC0012704
Resource Type:
Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 7; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
77 NANOSCIENCE AND NANOTECHNOLOGY

Citation Formats

Sutter, Eli, Tkachenko, Alexei V., Sutter, Peter, Roman Krahne, Arciniegas, Milena, Manna, Liberato, and de Graaf, Joost. In situ microscopy of the self-assembly of branched nanocrystals in solution. United States: N. p., 2016. Web. doi:10.1038/ncomms11213.
Sutter, Eli, Tkachenko, Alexei V., Sutter, Peter, Roman Krahne, Arciniegas, Milena, Manna, Liberato, & de Graaf, Joost. In situ microscopy of the self-assembly of branched nanocrystals in solution. United States. doi:10.1038/ncomms11213.
Sutter, Eli, Tkachenko, Alexei V., Sutter, Peter, Roman Krahne, Arciniegas, Milena, Manna, Liberato, and de Graaf, Joost. Mon . "In situ microscopy of the self-assembly of branched nanocrystals in solution". United States. doi:10.1038/ncomms11213. https://www.osti.gov/servlets/purl/1255732.
@article{osti_1255732,
title = {In situ microscopy of the self-assembly of branched nanocrystals in solution},
author = {Sutter, Eli and Tkachenko, Alexei V. and Sutter, Peter and Roman Krahne and Arciniegas, Milena and Manna, Liberato and de Graaf, Joost},
abstractNote = {Here, solution-phase self-assembly of nanocrystals into mesoscale structures is a promising strategy for constructing functional materials from nanoscale components. Liquid environments are key to self-assembly since they allow suspended nanocrystals to diffuse and interact freely, but they also complicate experiments. Real-time observations with single-particle resolution could have transformative impact on our understanding of nanocrystal self-assembly. Here we use real-time in situ imaging by liquid-cell electron microscopy to elucidate the nucleation and growth mechanism and properties of linear chains of octapod-shaped nanocrystals in their native solution environment. Statistical mechanics modelling based on these observations and using the measured chain-length distribution clarifies the relative importance of dipolar and entropic forces in the assembly process and gives direct access to the interparticle interaction. Our results suggest that monomer-resolved in situ imaging combined with modelling can provide unprecedented quantitative insight into the microscopic processes and interactions that govern nanocrystal self-assembly in solution.},
doi = {10.1038/ncomms11213},
journal = {Nature Communications},
number = ,
volume = 7,
place = {United States},
year = {2016},
month = {4}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 19 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Sensitive solution-processed visible-wavelength photodetectors
journal, September 2007

  • Konstantatos, Gerasimos; Clifford, Jason; Levina, Larissa
  • Nature Photonics, Vol. 1, Issue 9
  • DOI: 10.1038/nphoton.2007.147

Bright infrared quantum-dot light-emitting diodes through inter-dot spacing control
journal, May 2012

  • Sun, Liangfeng; Choi, Joshua J.; Stachnik, David
  • Nature Nanotechnology, Vol. 7, Issue 6
  • DOI: 10.1038/nnano.2012.63

Tunable plasmonic lattices of silver nanocrystals
journal, July 2007

  • Tao, Andrea; Sinsermsuksakul, Prasert; Yang, Peidong
  • Nature Nanotechnology, Vol. 2, Issue 7
  • DOI: 10.1038/nnano.2007.189

Electronically Coupled Nanocrystal Superlattice Films by in Situ Ligand Exchange at the Liquid–Air Interface
journal, November 2013

  • Dong, Angang; Jiao, Yucong; Milliron, Delia J.
  • ACS Nano, Vol. 7, Issue 12
  • DOI: 10.1021/nn404566b

Bandlike Transport in Strongly Coupled and Doped Quantum Dot Solids: A Route to High-Performance Thin-Film Electronics
journal, April 2012

  • Choi, Ji-Hyuk; Fafarman, Aaron T.; Oh, Soong Ju
  • Nano Letters, Vol. 12, Issue 5
  • DOI: 10.1021/nl301104z

Magnetic superlattices and their nanoscale phase transition effects
journal, February 2006

  • Cheon, J.; Park, J. -I.; Choi, J. -s.
  • Proceedings of the National Academy of Sciences, Vol. 103, Issue 9
  • DOI: 10.1073/pnas.0508877103

Nanocrystal bilayer for tandem catalysis
journal, April 2011

  • Yamada, Yusuke; Tsung, Chia-Kuang; Huang, Wenyu
  • Nature Chemistry, Vol. 3, Issue 5
  • DOI: 10.1038/nchem.1018

Spatially and temporally reconfigurable assembly of colloidal crystals
journal, April 2014

  • Kim, Youngri; Shah, Aayush A.; Solomon, Michael J.
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4676

Nanocrystal Superlattices
journal, October 1998


Structural diversity in binary nanoparticle superlattices
journal, January 2006

  • Shevchenko, Elena V.; Talapin, Dmitri V.; Kotov, Nicholas A.
  • Nature, Vol. 439, Issue 7072, p. 55-59
  • DOI: 10.1038/nature04414

Entropy-driven phase transitions
journal, February 1999


A DNA-based method for rationally assembling nanoparticles into macroscopic materials
journal, August 1996

  • Mirkin, Chad A.; Letsinger, Robert L.; Mucic, Robert C.
  • Nature, Vol. 382, Issue 6592, p. 607-609
  • DOI: 10.1038/382607a0

DNA-programmable nanoparticle crystallization
journal, January 2008

  • Park, Sung Yong; Lytton-Jean, Abigail K. R.; Lee, Byeongdu
  • Nature, Vol. 451, Issue 7178, p. 553-556
  • DOI: 10.1038/nature06508

DNA-guided crystallization of colloidal nanoparticles
journal, January 2008

  • Nykypanchuk, Dmytro; Maye, Mathew M.; van der Lelie, Daniel
  • Nature, Vol. 451, Issue 7178, p. 549-552
  • DOI: 10.1038/nature06560

Predictive Self-Assembly of Polyhedra into Complex Structures
journal, July 2012


Prediction of absolute crystal-nucleation rate in hard-sphere colloids
journal, February 2001

  • Auer, Stefan; Frenkel, Daan
  • Nature, Vol. 409, Issue 6823
  • DOI: 10.1038/35059035

Onset of heterogeneous crystal nucleation in colloidal suspensions
journal, March 2004


Real-Space Imaging of Nucleation and Growth in Colloidal Crystallization
journal, April 2001


A colloidal model system with an interaction tunable from hard sphere to soft and dipolar
journal, January 2003


Fabrication of Polyhedral Particles from Spherical Colloids and Their Self-Assembly into Rotator Phases
journal, November 2014

  • Vutukuri, Hanumantha Rao; Imhof, Arnout; van Blaaderen, Alfons
  • Angewandte Chemie International Edition, Vol. 53, Issue 50
  • DOI: 10.1002/anie.201409594

Hierarchical self-assembly of suspended branched colloidal nanocrystals into superlattice structures
journal, September 2011

  • Miszta, Karol; de Graaf, Joost; Bertoni, Giovanni
  • Nature Materials, Vol. 10, Issue 11
  • DOI: 10.1038/nmat3121

Dynamic microscopy of nanoscale cluster growth at the solid–liquid interface
journal, July 2003

  • Williamson, M. J.; Tromp, R. M.; Vereecken, P. M.
  • Nature Materials, Vol. 2, Issue 8
  • DOI: 10.1038/nmat944

Observation of Single Colloidal Platinum Nanocrystal Growth Trajectories
journal, June 2009


In situ liquid-cell electron microscopy of silver–palladium galvanic replacement reactions on silver nanoparticles
journal, September 2014

  • Sutter, E.; Jungjohann, K.; Bliznakov, S.
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms5946

Direct Observation of Nanoparticle Superlattice Formation by Using Liquid Cell Transmission Electron Microscopy
journal, February 2012

  • Park, Jungwon; Zheng, Haimei; Lee, Won Chul
  • ACS Nano, Vol. 6, Issue 3
  • DOI: 10.1021/nn203837m

Programming colloidal phase transitions with DNA strand displacement
journal, February 2015


Switching binary states of nanoparticle superlattices and dimer clusters by DNA strands
journal, December 2009

  • Maye, Mathew M.; Kumara, Mudalige Thilak; Nykypanchuk, Dmytro
  • Nature Nanotechnology, Vol. 5, Issue 2
  • DOI: 10.1038/nnano.2009.378

Colloidal Branched Semiconductor Nanocrystals: State of the Art and Perspectives
journal, January 2013

  • Li, Hongbo; Kanaras, Antonios G.; Manna, Liberato
  • Accounts of Chemical Research, Vol. 46, Issue 7
  • DOI: 10.1021/ar3002409

Anisotropy of building blocks and their assembly into complex structures
journal, August 2007

  • Glotzer, Sharon C.; Solomon, Michael J.
  • Nature Materials, Vol. 6, Issue 8, p. 557-562
  • DOI: 10.1038/nmat1949

Charge separation in Pt-decorated CdSe@CdS octapod nanocrystals
journal, January 2014

  • Conca, Erika; Aresti, Mauro; Saba, Michele
  • Nanoscale, Vol. 6, Issue 4
  • DOI: 10.1039/C3NR05567A

Ordered Two-Dimensional Superstructures of Colloidal Octapod-Shaped Nanocrystals on Flat Substrates
journal, September 2012

  • Qi, Weikai; Graaf, Joost de; Qiao, Fen
  • Nano Letters, Vol. 12, Issue 10
  • DOI: 10.1021/nl302620j

Evaporation-Induced Self-Assembly: Nanostructures Made Easy
journal, May 1999


Drying-mediated self-assembly of nanoparticles
journal, November 2003

  • Rabani, Eran; Reichman, David R.; Geissler, Phillip L.
  • Nature, Vol. 426, Issue 6964
  • DOI: 10.1038/nature02087

Nanoparticle Dynamics in a Nanodroplet
journal, March 2014

  • Lu, Jingyu; Aabdin, Zainul; Loh, N. Duane
  • Nano Letters, Vol. 14, Issue 4
  • DOI: 10.1021/nl500766j

    Works referencing / citing this record:

    In-situ liquid-cell TEM study of radial flow-guided motion of octahedral Au nanoparticles and nanoparticle clusters
    journal, April 2018


    In-situ liquid-cell TEM study of radial flow-guided motion of octahedral Au nanoparticles and nanoparticle clusters
    journal, April 2018


    Understanding and tailoring ligand interactions in the self-assembly of branched colloidal nanocrystals into planar superlattices
    journal, March 2018