skip to main content


Title: Using landscape typologies to model socioecological systems: Application to agriculture of the United States Gulf Coast

Agricultural enterprises are vulnerable to the effects of climate variability and change. Improved understanding of the determinants of vulnerability and adaptive capacity in agricultural systems is important for projecting and managing future climate risk. At present, three analytical tools dominate methodological approaches to understanding agroecological vulnerability to climate: process-based crop models, empirical crop models, and integrated assessment models. A common weakness of these approaches is their limited treatment of socio-economic conditions and human agency in modeling agroecological processes and outcomes. This study proposes a framework that uses spatial cluster analysis to generate regional socioecological typologies that capture geographic variance in regional agricultural production and enable attribution of that variance to climatic, topographic, edaphic, and socioeconomic components. This framework was applied to historical corn production (1986-2010) in the U.S. Gulf of Mexico region as a testbed. The results demonstrate that regional socioeconomic heterogeneity is an important driving force in human dominated ecosystems, which we hypothesize, is a function of the link between socioeconomic conditions and the adaptive capacity of agricultural systems. Meaningful representation of future agricultural responses to climate variability and change is contingent upon understanding interactions among biophysical conditions, socioeconomic conditions, and human agency their incorporation in predictive models.
 [1] ;  [1] ;  [1] ;  [1]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Publication Date:
Grant/Contract Number:
Accepted Manuscript
Journal Name:
Environmental Modelling and Software
Additional Journal Information:
Journal Volume: 79; Journal Issue: C; Journal ID: ISSN 1364-8152
Research Org:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org:
USDOE Office of Science (SC)
Country of Publication:
United States
58 GEOSCIENCES; socioecological systems; landscape typology; socioecological typology; high-dimensional statistics; agroecosystem; adaptive capacity
OSTI Identifier:
Alternate Identifier(s):
OSTI ID: 1341126