skip to main content


Title: Gyrokinetic neoclassical study of the bootstrap current in the tokamak edge pedestal with fully non-linear Coulomb collisions

As a follow-up on the drift-kinetic study of the non-local bootstrap current in the steep edge pedestal of tokamak plasma by Koh et al. [Phys. Plasmas 19, 072505 (2012)], a gyrokinetic neoclassical study is performed with gyrokinetic ions and drift-kinetic electrons. Besides the gyrokinetic improvement of ion physics from the drift-kinetic treatment, a fully non-linear Fokker-Planck collision operator—that conserves mass, momentum, and energy—is used instead of Koh et al.'s linearized collision operator in consideration of the possibility that the ion distribution function is non-Maxwellian in the steep pedestal. An inaccuracy in Koh et al.'s result is found in the steep edge pedestal that originated from a small error in the collisional momentum conservation. The present study concludes that (1) the bootstrap current in the steep edge pedestal is generally smaller than what has been predicted from the small banana-width (local) approximation [e.g., Sauter et al., Phys. Plasmas 6, 2834 (1999) and Belli et al., Plasma Phys. Controlled Fusion 50, 095010 (2008)], (2) the plasma flow evaluated from the local approximation can significantly deviate from the non-local results, and (3) the bootstrap current in the edge pedestal, where the passing particle region is small, can be dominantly carried by the trappedmore » particles in a broad trapped boundary layer. In conclusion, a new analytic formula based on numerous gyrokinetic simulations using various magnetic equilibria and plasma profiles with self-consistent Grad-Shafranov solutions is constructed.« less
ORCiD logo [1] ;  [1]
  1. Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)
Publication Date:
Report Number(s):
Journal ID: ISSN 1070-664X; PHPAEN
Grant/Contract Number:
AC02-05CH11231; AC02-06CH11357; AC02-09CH11466; FC02-99ER54512
Accepted Manuscript
Journal Name:
Physics of Plasmas
Additional Journal Information:
Journal Volume: 23; Journal Issue: 4; Journal ID: ISSN 1070-664X
American Institute of Physics (AIP)
Research Org:
Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)
Sponsoring Org:
USDOE Office of Science (SC), Fusion Energy Sciences (FES) (SC-24)
Country of Publication:
United States
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; Bootstrap Current; Edge Plasma; Numerical Simulation
OSTI Identifier:
Alternate Identifier(s):
OSTI ID: 1246538