skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Investigating the Complex Chemistry of Functional Energy Storage Systems: The Need for an Integrative, Multiscale (Molecular to Mesoscale) Perspective

Abstract

Electric energy storage systems such as batteries can significantly impact society in a variety of ways, including facilitating the widespread deployment of portable electronic devices, enabling the use of renewable energy generation for local off grid situations and providing the basis of highly efficient power grids integrated with energy production, large stationary batteries, and the excess capacity from electric vehicles. A critical challenge for electric energy storage is understanding the basic science associated with the gap between the usable output of energy storage systems and their theoretical energy contents. The goal of overcoming this inefficiency is to achieve more useful work $(w)$ and minimize the generation of waste heat $(q)$. Minimization of inefficiency can be approached at the macro level, where bulk parameters are identified and manipulated, with optimization as an ultimate goal. However, such a strategy may not provide insight toward the complexities of electric energy storage, especially the inherent heterogeneity of ion and electron flux contributing to the local resistances at numerous interfaces found at several scale lengths within a battery. Thus, the ability to predict and ultimately tune these complex systems to specific applications, both current and future, demands not just parametrization at the bulk scale butmore » rather specific experimentation and understanding over multiple length scales within the same battery system, from the molecular scale to the mesoscale. Herein, we provide a case study examining the insights and implications from multiscale investigations of a prospective battery material, Fe3O4.« less

Authors:
 [1];  [1];  [2];  [3];  [1];  [3];  [2];  [4];  [4];  [5]
  1. Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
  2. Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
  3. Energy Sciences Directorate, Brookhaven National Laboratory, Upton, New York 11973, United States
  4. Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States, Department of Materials Science and Engineering, Stony Brook University, Stony Brook, New York 11794, United States
  5. Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States, Energy Sciences Directorate, Brookhaven National Laboratory, Upton, New York 11973, United States, Department of Materials Science and Engineering, Stony Brook University, Stony Brook, New York 11794, United States
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC) (United States). Center for Mesoscale Transport Properties (m2M)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); National Science Foundation (NSF)
OSTI Identifier:
1254877
Alternate Identifier(s):
OSTI ID: 1387841
Grant/Contract Number:  
SC0012673; DGE-11-44155
Resource Type:
Published Article
Journal Name:
ACS Central Science
Additional Journal Information:
Journal Name: ACS Central Science Journal Volume: 2 Journal Issue: 6; Journal ID: ISSN 2374-7943
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; energy storage (including batteries and capacitors); charge transport; mesostructured materials

Citation Formats

Abraham, Alyson, Housel, Lisa M., Lininger, Christianna N., Bock, David C., Jou, Jeffrey, Wang, Feng, West, Alan C., Marschilok, Amy C., Takeuchi, Kenneth J., and Takeuchi, Esther S. Investigating the Complex Chemistry of Functional Energy Storage Systems: The Need for an Integrative, Multiscale (Molecular to Mesoscale) Perspective. United States: N. p., 2016. Web. https://doi.org/10.1021/acscentsci.6b00100.
Abraham, Alyson, Housel, Lisa M., Lininger, Christianna N., Bock, David C., Jou, Jeffrey, Wang, Feng, West, Alan C., Marschilok, Amy C., Takeuchi, Kenneth J., & Takeuchi, Esther S. Investigating the Complex Chemistry of Functional Energy Storage Systems: The Need for an Integrative, Multiscale (Molecular to Mesoscale) Perspective. United States. https://doi.org/10.1021/acscentsci.6b00100
Abraham, Alyson, Housel, Lisa M., Lininger, Christianna N., Bock, David C., Jou, Jeffrey, Wang, Feng, West, Alan C., Marschilok, Amy C., Takeuchi, Kenneth J., and Takeuchi, Esther S. Tue . "Investigating the Complex Chemistry of Functional Energy Storage Systems: The Need for an Integrative, Multiscale (Molecular to Mesoscale) Perspective". United States. https://doi.org/10.1021/acscentsci.6b00100.
@article{osti_1254877,
title = {Investigating the Complex Chemistry of Functional Energy Storage Systems: The Need for an Integrative, Multiscale (Molecular to Mesoscale) Perspective},
author = {Abraham, Alyson and Housel, Lisa M. and Lininger, Christianna N. and Bock, David C. and Jou, Jeffrey and Wang, Feng and West, Alan C. and Marschilok, Amy C. and Takeuchi, Kenneth J. and Takeuchi, Esther S.},
abstractNote = {Electric energy storage systems such as batteries can significantly impact society in a variety of ways, including facilitating the widespread deployment of portable electronic devices, enabling the use of renewable energy generation for local off grid situations and providing the basis of highly efficient power grids integrated with energy production, large stationary batteries, and the excess capacity from electric vehicles. A critical challenge for electric energy storage is understanding the basic science associated with the gap between the usable output of energy storage systems and their theoretical energy contents. The goal of overcoming this inefficiency is to achieve more useful work $(w)$ and minimize the generation of waste heat $(q)$. Minimization of inefficiency can be approached at the macro level, where bulk parameters are identified and manipulated, with optimization as an ultimate goal. However, such a strategy may not provide insight toward the complexities of electric energy storage, especially the inherent heterogeneity of ion and electron flux contributing to the local resistances at numerous interfaces found at several scale lengths within a battery. Thus, the ability to predict and ultimately tune these complex systems to specific applications, both current and future, demands not just parametrization at the bulk scale but rather specific experimentation and understanding over multiple length scales within the same battery system, from the molecular scale to the mesoscale. Herein, we provide a case study examining the insights and implications from multiscale investigations of a prospective battery material, Fe3O4.},
doi = {10.1021/acscentsci.6b00100},
journal = {ACS Central Science},
number = 6,
volume = 2,
place = {United States},
year = {2016},
month = {5}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1021/acscentsci.6b00100

Citation Metrics:
Cited by: 12 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

New science at the meso frontier: Dense nanostructure architectures for electrical energy storage
journal, August 2015


Spinel electrodes for lithium batteries — A review
journal, August 1987


A preliminary investigation of the electrochemical performance of α-Fe2O3 and Fe3O4 cathodes in high-temperature cells
journal, May 1981


Structural characterization of the lithiated iron oxides LixFe3O4 and LixFe2O3 (0<x<2)
journal, June 1982


Direct Observation of Lithium Staging in Partially Delithiated LiFePO 4 at Atomic Resolution
journal, April 2011

  • Gu, Lin; Zhu, Changbao; Li, Hong
  • Journal of the American Chemical Society, Vol. 133, Issue 13
  • DOI: 10.1021/ja109412x

Wavelet data analysis of EXAFS spectra
journal, June 2009


Crystallite Size Control and Resulting Electrochemistry of Magnetite, Fe[sub 3]O[sub 4]
journal, January 2009

  • Zhu, Shali; Marschilok, Amy C.; Takeuchi, Esther S.
  • Electrochemical and Solid-State Letters, Vol. 12, Issue 4
  • DOI: 10.1149/1.3078076

Structural and magnetic characterization of the lithiated iron oxide Li x Fe 3 O 4
journal, March 1986

  • Fontcuberta, J.; Rodríguez, J.; Pernet, M.
  • Journal of Applied Physics, Vol. 59, Issue 6
  • DOI: 10.1063/1.336420

Mathematical Modeling of Commercial LiFePO 4 Electrodes Based on Variable Solid-State Diffusivity
journal, January 2011

  • Farkhondeh, M.; Delacourt, C.
  • Journal of The Electrochemical Society, Vol. 159, Issue 2
  • DOI: 10.1149/2.073202jes

A Discharge Model for Phase Transformation Electrodes:  Formulation, Experimental Validation, and Analysis
journal, November 2007

  • Wang, Chunsheng; Kasavajjula, Uday S.; Arce, Pedro E.
  • The Journal of Physical Chemistry C, Vol. 111, Issue 44
  • DOI: 10.1021/jp074490u

Modeling the Mesoscale Transport of Lithium-Magnetite Electrodes Using Insight from Discharge and Voltage Recovery Experiments
journal, January 2015

  • Knehr, K. W.; Brady, Nicholas W.; Cama, Christina A.
  • Journal of The Electrochemical Society, Vol. 162, Issue 14
  • DOI: 10.1149/2.0961514jes

Mesoscale Transport in Magnetite Electrodes for Lithium-Ion Batteries
journal, September 2015


Fluoride based electrode materials for advanced energy storage devices
journal, April 2007


EXAFS study of size dependence of atomic structure in palladium nanoparticles
journal, April 2014

  • Srabionyan, Vasiliy V.; Bugaev, Aram L.; Pryadchenko, Vasiliy V.
  • Journal of Physics and Chemistry of Solids, Vol. 75, Issue 4
  • DOI: 10.1016/j.jpcs.2013.12.012

Continuous Cauchy wavelet transform analyses of EXAFS spectra: A qualitative approach
journal, April 2003

  • Muñoz, Manuel; Argoul, Pierre; Farges, François
  • American Mineralogist, Vol. 88, Issue 4
  • DOI: 10.2138/am-2003-0423

Direct imaging of hydrogen-atom columns in a crystal by annular bright-field electron microscopy
journal, February 2011

  • Ishikawa, Ryo; Okunishi, Eiji; Sawada, Hidetaka
  • Nature Materials, Vol. 10, Issue 4
  • DOI: 10.1038/nmat2957

Nonequilibrium Thermodynamics of Porous Electrodes
journal, January 2012

  • Ferguson, Todd R.; Bazant, Martin Z.
  • Journal of The Electrochemical Society, Vol. 159, Issue 12
  • DOI: 10.1149/2.048212jes

Experimental and Theoretical Characterization of Electrode Materials that Undergo Large Volume Changes and Application to the Lithium–Silicon System
journal, February 2015

  • Verbrugge, Mark W.; Baker, Daniel R.; Xiao, Xingcheng
  • The Journal of Physical Chemistry C, Vol. 119, Issue 10
  • DOI: 10.1021/jp512585z

Lithium insertion into Fe3O4
journal, November 1988


Ternary metal fluorides as high-energy cathodes with low cycling hysteresis
journal, March 2015

  • Wang, Feng; Kim, Sung-Wook; Seo, Dong-Hwa
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7668

Effect of Particle Size on Lithium Intercalation into α-Fe[sub 2]O[sub 3]
journal, January 2003

  • Larcher, D.; Masquelier, C.; Bonnin, D.
  • Journal of The Electrochemical Society, Vol. 150, Issue 1
  • DOI: 10.1149/1.1528941

Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries
journal, September 2000

  • Poizot, P.; Laruelle, S.; Grugeon, S.
  • Nature, Vol. 407, Issue 6803, p. 496-499
  • DOI: 10.1038/35035045

Thermodynamic model development for lithium intercalation electrodes
journal, December 2008


Modeling of Porous Insertion Electrodes with Liquid Electrolyte
journal, January 1982

  • West, K.
  • Journal of The Electrochemical Society, Vol. 129, Issue 7
  • DOI: 10.1149/1.2124188

Synthesis and rate performance of Fe3O4-based Cu nanostructured electrodes for Li ion batteries
journal, May 2011


Predicting Active Material Utilization in LiFePO[sub 4] Electrodes Using a Multiscale Mathematical Model
journal, January 2010

  • Dargaville, S.; Farrell, T. W.
  • Journal of The Electrochemical Society, Vol. 157, Issue 7
  • DOI: 10.1149/1.3425620

Wavelet analysis of extended x-ray absorption fine structure data
journal, March 2005


Mathematical Modeling of Lithium Iron Phosphate Electrode: Galvanostatic Charge/Discharge and Path Dependence
journal, January 2011

  • Safari, M.; Delacourt, C.
  • Journal of The Electrochemical Society, Vol. 158, Issue 2
  • DOI: 10.1149/1.3515902

Modeling Lithium Intercalation of Single-Fiber Carbon Microelectrodes
journal, January 1996

  • Verbrugge, Mark W.
  • Journal of The Electrochemical Society, Vol. 143, Issue 2
  • DOI: 10.1149/1.1836486

Electrochemical discharge of nanocrystalline magnetite: structure analysis using X-ray diffraction and X-ray absorption spectroscopy
journal, January 2013

  • Menard, Melissa C.; Takeuchi, Kenneth J.; Marschilok, Amy C.
  • Physical Chemistry Chemical Physics, Vol. 15, Issue 42
  • DOI: 10.1039/c3cp52870g

Visualizing non-equilibrium lithiation of spinel oxide via in situ transmission electron microscopy
journal, May 2016

  • He, Kai; Zhang, Sen; Li, Jing
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms11441

Mesoscale Modeling of a Li-Ion Polymer Cell
journal, January 2007

  • Wang, Chia-Wei; Sastry, Ann Marie
  • Journal of The Electrochemical Society, Vol. 154, Issue 11
  • DOI: 10.1149/1.2778285

Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell
journal, January 1993

  • Doyle, Marc
  • Journal of The Electrochemical Society, Vol. 140, Issue 6
  • DOI: 10.1149/1.2221597

The solid-state electrochemical reduction process of magnetite in Li batteries: in situ magnetic measurements toward electrochemical magnets
journal, January 2014

  • Yamada, Tetsuya; Morita, Kantaro; Kume, Keita
  • J. Mater. Chem. C, Vol. 2, Issue 26
  • DOI: 10.1039/c4tc00299g

Electrochemical activity of nanocrystalline Fe3O4 in aprotic Li and Na salt electrolytes
journal, September 2008


Intercalation dynamics in rechargeable battery materials: General theory and phase-transformation waves in LiFePO4
journal, November 2008


Lithium Ion Cell Performance Enhancement Using Aqueous LiFePO 4 Cathode Dispersions and Polyethyleneimine Dispersant
journal, November 2012

  • Li, Jianlin; Armstrong, Beth L.; Kiggans, Jim
  • Journal of The Electrochemical Society, Vol. 160, Issue 2
  • DOI: 10.1149/2.037302jes

Ohmic Drop in LiFePO 4 Based Lithium Battery Cathodes Containing Agglomerates
journal, January 2012

  • Cornut, R.; Lepage, D.; Schougaard, S. B.
  • Journal of The Electrochemical Society, Vol. 159, Issue 6
  • DOI: 10.1149/2.081206jes

First Cross-Section Observation of an All Solid-State Lithium-Ion “Nanobattery” by Transmission Electron Microscopy
journal, March 2008

  • Brazier, A.; Dupont, L.; Dantras-Laffont, L.
  • Chemistry of Materials, Vol. 20, Issue 6
  • DOI: 10.1021/cm7033933

A transmission electron microscopy study of crack formation and propagation in electrochemically cycled graphite electrode in lithium-ion cells
journal, October 2011


Conversion reactions: a new pathway to realise energy in lithium-ion battery—review
journal, July 2008


In vitro toxicity of nanoparticles in BRL 3A rat liver cells
journal, October 2005


Nanosize Effect on High-Rate Li-Ion Intercalation in LiCoO 2 Electrode
journal, June 2007

  • Okubo, Masashi; Hosono, Eiji; Kim, Jedeok
  • Journal of the American Chemical Society, Vol. 129, Issue 23
  • DOI: 10.1021/ja0681927

Radial Distribution of Electron Density in Magnetite, Fe 3 O 4
journal, October 1997


Nanocrystalline Magnetite: Synthetic Crystallite Size Control and Resulting Magnetic and Electrochemical Properties
journal, January 2010

  • Zhu, Shali; Marschilok, Amy C.; Takeuchi, Esther S.
  • Journal of The Electrochemical Society, Vol. 157, Issue 11
  • DOI: 10.1149/1.3478667

Electrochemical Insertion of Li and Na Ions into Nanocrystalline Fe[sub 3]O[sub 4] and α-Fe[sub 2]O[sub 3] for Rechargeable Batteries
journal, January 2010

  • Komaba, Shinichi; Mikumo, Takashi; Yabuuchi, Naoaki
  • Journal of The Electrochemical Society, Vol. 157, Issue 1
  • DOI: 10.1149/1.3254160

Effective Transport Properties of LiMn2O4 Electrode via Particle-Scale Modeling
journal, January 2011

  • Gupta, Amit; Seo, Jeong Hun; Zhang, Xiangchun
  • Journal of The Electrochemical Society, Vol. 158, Issue 5
  • DOI: 10.1149/1.3560441

Facile synthesis of carbon-decorated single-crystalline Fe3O4 nanowires and their application as high performance anode in lithium ion batteries
journal, January 2009

  • Muraliganth, Theivanayagam; Vadivel Murugan, Arumugam; Manthiram, Arumugam
  • Chemical Communications, Issue 47
  • DOI: 10.1039/b916376j

2D Cross Sectional Analysis and Associated Electrochemistry of Composite Electrodes Containing Dispersed Agglomerates of Nanocrystalline Magnetite, Fe 3 O 4
journal, June 2015

  • Bock, David C.; Kirshenbaum, Kevin C.; Wang, Jiajun
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 24
  • DOI: 10.1021/acsami.5b02478

Structural characterization and EXAFS wavelet analysis of Yb doped ZnO by wet chemistry route
journal, February 2015


Dispersion of Nanocrystalline Fe 3 O 4 within Composite Electrodes: Insights on Battery-Related Electrochemistry
journal, April 2016

  • Bock, David C.; Pelliccione, Christopher J.; Zhang, Wei
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 18
  • DOI: 10.1021/acsami.6b01134

Structure Stabilization by Mixed Anions in Oxyfluoride Cathodes for High-Energy Lithium Batteries
journal, September 2015


X-ray absorption spectroscopy of lithium insertion and de-insertion in copper birnessite nanoparticle electrodes
journal, January 2016

  • Pelliccione, Christopher J.; Li, Yue Ru; Marschilok, Amy C.
  • Physical Chemistry Chemical Physics, Vol. 18, Issue 4
  • DOI: 10.1039/C5CP05926G

Variation in the iron oxidation states of magnetite nanocrystals as a function of crystallite size: The impact on electrochemical capacity
journal, April 2013


EXAFS as a tool to interrogate the size and shape of mono and bimetallic catalyst nanoparticles
journal, January 2010

  • Beale, Andrew M.; Weckhuysen, Bert M.
  • Physical Chemistry Chemical Physics, Vol. 12, Issue 21
  • DOI: 10.1039/b925206a

Discharge Model for the Lithium Iron-Phosphate Electrode
journal, January 2004

  • Srinivasan, Venkat; Newman, John
  • Journal of The Electrochemical Society, Vol. 151, Issue 10
  • DOI: 10.1149/1.1785012