skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Valence-band electronic structure evolution of graphene oxide upon thermal annealing for optoelectronics

Abstract

We report valence band electronic structure evolution of graphene oxide (GO) upon its thermal reduction. Degree of oxygen functionalization was controlled by annealing temperatures, and an electronic structure evolution was monitored using real-time ultraviolet photoelectron spectroscopy. We observed a drastic increase in density of states around the Fermi level upon thermal annealing at ~600 °C. The result indicates that while there is an apparent band gap for GO prior to a thermal reduction, the gap closes after an annealing around that temperature. This trend of band gap closure was correlated with electrical, chemical, and structural properties to determine a set of GO material properties that is optimal for optoelectronics. The results revealed that annealing at a temperature of ~500 °C leads to the desired properties, demonstrated by a uniform and an order of magnitude enhanced photocurrent map of an individual GO sheet compared to as-synthesized counterpart.

Authors:
 [1];  [2];  [2];  [2];  [1];  [3];  [4];  [5];  [6];  [7];  [1];  [8];  [1];  [1];  [1];  [1];  [6];  [5];  [1];  [9] more »;  [1];  [2] « less
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  2. Tohoku Univ., Sendai (Japan). Inst. of Multidisciplinary Research for Advanced Materials (IMRAM)
  3. National Univ. of Singapore (Singapore)
  4. Imperial College, London (United Kingdom)
  5. Tohoku Univ., Sendai (Japan). WPI-Advanced Inst. for Materials Research
  6. Japan Atomic Energy Agency (JAEA), Kouto (Japan)
  7. Akita National College of Technology, Akita (Japan)
  8. National Inst. of Advanced Industrial Science and Technology (AIST), Tsukuba (Japan). Nanotube Research Center
  9. Rutgers Univ., Piscataway, NJ (United States)
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1254851
Alternate Identifier(s):
OSTI ID: 1401197
Report Number(s):
LA-UR-15-23672
Journal ID: ISSN 1862-6300
Grant/Contract Number:  
AC52-06NA25396
Resource Type:
Accepted Manuscript
Journal Name:
Physica Status Solidi. A, Applications and Materials Science
Additional Journal Information:
Journal Name: Physica Status Solidi. A, Applications and Materials Science; Journal ID: ISSN 1862-6300
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; Material Science

Citation Formats

Yamaguchi, Hisato, Ogawa, Shuichi, Watanabe, Daiki, Hozumi, Hideaki, Gao, Yongqian, Eda, Goki, Mattevi, Cecilia, Fujita, Takeshi, Yoshigoe, Akitaka, Ishizuka, Shinji, Adamska, Lyudmyla, Yamada, Takatoshi, Dattelbaum, Andrew M., Gupta, Gautam, Doorn, Stephen K., Velizhanin, Kirill A., Teraoka, Yuden, Chen, Mingwei, Htoon, Han, Chhowalla, Manish, Mohite, Aditya D., and Takakuwa, Yuji. Valence-band electronic structure evolution of graphene oxide upon thermal annealing for optoelectronics. United States: N. p., 2016. Web. doi:10.1002/pssa.201532855.
Yamaguchi, Hisato, Ogawa, Shuichi, Watanabe, Daiki, Hozumi, Hideaki, Gao, Yongqian, Eda, Goki, Mattevi, Cecilia, Fujita, Takeshi, Yoshigoe, Akitaka, Ishizuka, Shinji, Adamska, Lyudmyla, Yamada, Takatoshi, Dattelbaum, Andrew M., Gupta, Gautam, Doorn, Stephen K., Velizhanin, Kirill A., Teraoka, Yuden, Chen, Mingwei, Htoon, Han, Chhowalla, Manish, Mohite, Aditya D., & Takakuwa, Yuji. Valence-band electronic structure evolution of graphene oxide upon thermal annealing for optoelectronics. United States. doi:10.1002/pssa.201532855.
Yamaguchi, Hisato, Ogawa, Shuichi, Watanabe, Daiki, Hozumi, Hideaki, Gao, Yongqian, Eda, Goki, Mattevi, Cecilia, Fujita, Takeshi, Yoshigoe, Akitaka, Ishizuka, Shinji, Adamska, Lyudmyla, Yamada, Takatoshi, Dattelbaum, Andrew M., Gupta, Gautam, Doorn, Stephen K., Velizhanin, Kirill A., Teraoka, Yuden, Chen, Mingwei, Htoon, Han, Chhowalla, Manish, Mohite, Aditya D., and Takakuwa, Yuji. Thu . "Valence-band electronic structure evolution of graphene oxide upon thermal annealing for optoelectronics". United States. doi:10.1002/pssa.201532855. https://www.osti.gov/servlets/purl/1254851.
@article{osti_1254851,
title = {Valence-band electronic structure evolution of graphene oxide upon thermal annealing for optoelectronics},
author = {Yamaguchi, Hisato and Ogawa, Shuichi and Watanabe, Daiki and Hozumi, Hideaki and Gao, Yongqian and Eda, Goki and Mattevi, Cecilia and Fujita, Takeshi and Yoshigoe, Akitaka and Ishizuka, Shinji and Adamska, Lyudmyla and Yamada, Takatoshi and Dattelbaum, Andrew M. and Gupta, Gautam and Doorn, Stephen K. and Velizhanin, Kirill A. and Teraoka, Yuden and Chen, Mingwei and Htoon, Han and Chhowalla, Manish and Mohite, Aditya D. and Takakuwa, Yuji},
abstractNote = {We report valence band electronic structure evolution of graphene oxide (GO) upon its thermal reduction. Degree of oxygen functionalization was controlled by annealing temperatures, and an electronic structure evolution was monitored using real-time ultraviolet photoelectron spectroscopy. We observed a drastic increase in density of states around the Fermi level upon thermal annealing at ~600 °C. The result indicates that while there is an apparent band gap for GO prior to a thermal reduction, the gap closes after an annealing around that temperature. This trend of band gap closure was correlated with electrical, chemical, and structural properties to determine a set of GO material properties that is optimal for optoelectronics. The results revealed that annealing at a temperature of ~500 °C leads to the desired properties, demonstrated by a uniform and an order of magnitude enhanced photocurrent map of an individual GO sheet compared to as-synthesized counterpart.},
doi = {10.1002/pssa.201532855},
journal = {Physica Status Solidi. A, Applications and Materials Science},
number = ,
volume = ,
place = {United States},
year = {2016},
month = {9}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 2 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Flash Reduction and Patterning of Graphite Oxide and Its Polymer Composite
journal, August 2009

  • Cote, Laura J.; Cruz-Silva, Rodolfo; Huang, Jiaxing
  • Journal of the American Chemical Society, Vol. 131, Issue 31, p. 11027-11032
  • DOI: 10.1021/ja902348k

Determination of the Local Chemical Structure of Graphene Oxide and Reduced Graphene Oxide
journal, August 2010

  • Erickson, Kris; Erni, Rolf; Lee, Zonghoon
  • Advanced Materials, Vol. 22, Issue 40, p. 4467-4472
  • DOI: 10.1002/adma.201000732

Simultaneous reduction and nitrogen doping of graphite oxide by using electron beam irradiation
journal, January 2015


Spatially Resolved Photoexcited Charge-Carrier Dynamics in Phase-Engineered Monolayer MoS 2
journal, January 2015

  • Yamaguchi, Hisato; Blancon, Jean-Christophe; Kappera, Rajesh
  • ACS Nano, Vol. 9, Issue 1
  • DOI: 10.1021/nn506469v

Atomic Oxygen on Graphite: Chemical Characterization and Thermal Reduction
journal, May 2012

  • Larciprete, Rosanna; Lacovig, Paolo; Gardonio, Sandra
  • The Journal of Physical Chemistry C, Vol. 116, Issue 18
  • DOI: 10.1021/jp2098153

Insulator to Semimetal Transition in Graphene Oxide
journal, August 2009

  • Eda, Goki; Mattevi, Cecilia; Yamaguchi, Hisato
  • The Journal of Physical Chemistry C, Vol. 113, Issue 35
  • DOI: 10.1021/jp9051402

Probing the Thermal Deoxygenation of Graphene Oxide Using High-Resolution In Situ X-ray-Based Spectroscopies
journal, August 2011

  • Ganguly, Abhijit; Sharma, Surbhi; Papakonstantinou, Pagona
  • The Journal of Physical Chemistry C, Vol. 115, Issue 34
  • DOI: 10.1021/jp203741y

Properties of Fluorinated Graphene Films
journal, August 2010

  • Robinson, Jeremy T.; Burgess, James S.; Junkermeier, Chad E.
  • Nano Letters, Vol. 10, Issue 8
  • DOI: 10.1021/nl101437p

Flexible Organic Photovoltaic Cells with In Situ Nonthermal Photoreduction of Spin-Coated Graphene Oxide Electrodes
journal, January 2013

  • Kymakis, Emmanuel; Savva, Kyriaki; Stylianakis, Minas M.
  • Advanced Functional Materials, Vol. 23, Issue 21
  • DOI: 10.1002/adfm.201202713

Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide
journal, June 2007


On the origin of the stability of graphene oxide membranes in water
journal, January 2015

  • Yeh, Che-Ning; Raidongia, Kalyan; Shao, Jiaojing
  • Nature Chemistry, Vol. 7, Issue 2
  • DOI: 10.1038/nchem.2145

Atomically precise bottom-up fabrication of graphene nanoribbons
journal, July 2010

  • Cai, Jinming; Ruffieux, Pascal; Jaafar, Rached
  • Nature, Vol. 466, Issue 7305
  • DOI: 10.1038/nature09211

Evolution of Electrical, Chemical, and Structural Properties of Transparent and Conducting Chemically Derived Graphene Thin Films
journal, August 2009

  • Mattevi, Cecilia; Eda, Goki; Agnoli, Stefano
  • Advanced Functional Materials, Vol. 19, Issue 16
  • DOI: 10.1002/adfm.200900166

The band structure of graphene oxide examined using photoluminescence spectroscopy
journal, January 2015

  • Liang, H. F.; Smith, C. T. G.; Mills, C. A.
  • Journal of Materials Chemistry C, Vol. 3, Issue 48
  • DOI: 10.1039/C5TC00307E

Diamond-like amorphous carbon
journal, May 2002


Chemically Derived, Ultrasmooth Graphene Nanoribbon Semiconductors
journal, February 2008


Bandgap opening in graphene induced by patterned hydrogen adsorption
journal, March 2010

  • Balog, Richard; Jørgensen, Bjarke; Nilsson, Louis
  • Nature Materials, Vol. 9, Issue 4
  • DOI: 10.1038/nmat2710

Highly Efficient Charge Separation and Collection across in Situ Doped Axial VLS-Grown Si Nanowire p–n Junctions
journal, January 2012

  • Mohite, A. D.; Perea, D. E.; Singh, S.
  • Nano Letters, Vol. 12, Issue 4
  • DOI: 10.1021/nl204505p

Controlling the Electronic Structure of Bilayer Graphene
journal, August 2006


Non-monotonous dependence of the electrical conductivity and chemical stability of a graphene freestanding film on the degree of reduction
journal, January 2015

  • Jo, Yun Kyung; Kim, In Young; Kim, Su-jin
  • RSC Advances, Vol. 5, Issue 25
  • DOI: 10.1039/C5RA00309A

Hydrazine and Thermal Reduction of Graphene Oxide: Reaction Mechanisms, Product Structures, and Reaction Design
journal, December 2009

  • Gao, Xingfa; Jang, Joonkyung; Nagase, Shigeru
  • The Journal of Physical Chemistry C, Vol. 114, Issue 2
  • DOI: 10.1021/jp909284g

Impurities on graphene: Midgap states and migration barriers
journal, August 2009


A roadmap for graphene
journal, October 2012

  • Novoselov, K. S.; Fal′ko, V. I.; Colombo, L.
  • Nature, Vol. 490, Issue 7419
  • DOI: 10.1038/nature11458

Micrometer-Scale Ballistic Transport in Encapsulated Graphene at Room Temperature
journal, June 2011

  • Mayorov, Alexander S.; Gorbachev, Roman V.; Morozov, Sergey V.
  • Nano Letters, Vol. 11, Issue 6
  • DOI: 10.1021/nl200758b

Photochemical Synthesis of Solution-Processable Graphene Derivatives with Tunable Bandgaps for Organic Solar Cells
journal, December 2014

  • Stylianakis, Minas M.; Sygletou, Maria; Savva, Kyriaki
  • Advanced Optical Materials, Vol. 3, Issue 5
  • DOI: 10.1002/adom.201400450

The rise of graphene
journal, March 2007

  • Geim, A. K.; Novoselov, K. S.
  • Nature Materials, Vol. 6, Issue 3, p. 183-191
  • DOI: 10.1038/nmat1849

Fluorographene: A Two-Dimensional Counterpart of Teflon
journal, November 2010


Improving the efficiency of organic photovoltaics by tuning the work function of graphene oxide hole transporting layers
journal, January 2014

  • Stratakis, Emmanuel; Savva, Kyriaki; Konios, Dimitrios
  • Nanoscale, Vol. 6, Issue 12
  • DOI: 10.1039/C4NR01539H

Chemically homogeneous and thermally reversible oxidation of epitaxial graphene
journal, February 2012

  • Hossain, Md. Zakir; Johns, James E.; Bevan, Kirk H.
  • Nature Chemistry, Vol. 4, Issue 4
  • DOI: 10.1038/nchem.1269

Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material
journal, April 2008

  • Eda, Goki; Fanchini, Giovanni; Chhowalla, Manish
  • Nature Nanotechnology, Vol. 3, Issue 5, p. 270-274
  • DOI: 10.1038/nnano.2008.83

Scalable enhancement of graphene oxide properties by thermally driven phase transformation
journal, December 2013

  • Kumar, Priyank V.; Bardhan, Neelkanth M.; Tongay, Sefaattin
  • Nature Chemistry, Vol. 6, Issue 2
  • DOI: 10.1038/nchem.1820

Control of Graphene's Properties by Reversible Hydrogenation: Evidence for Graphane
journal, January 2009


Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene
journal, July 2008


Controlled, Stepwise Reduction and Band Gap Manipulation of Graphene Oxide
journal, March 2012

  • Mathkar, Akshay; Tozier, Dylan; Cox, Paris
  • The Journal of Physical Chemistry Letters, Vol. 3, Issue 8
  • DOI: 10.1021/jz300096t

Fine Structure Constant Defines Visual Transparency of Graphene
journal, June 2008


Electronic Transport Properties of Individual Chemically Reduced Graphene Oxide Sheets
journal, November 2007

  • Gomez-Navarro, Cristina; Weitz, R. Thomas; Bittner, Alexander M.
  • Nano Letters, Vol. 7, Issue 11, p. 3499-3503
  • DOI: 10.1021/nl072090c

Structural evolution during the reduction of chemically derived graphene oxide
journal, June 2010

  • Bagri, Akbar; Mattevi, Cecilia; Acik, Muge
  • Nature Chemistry, Vol. 2, Issue 7, p. 581-587
  • DOI: 10.1038/nchem.686