skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Antiferromagnetic Spin Wave Field-Effect Transistor

Abstract

In a collinear antiferromagnet with easy-axis anisotropy, symmetry dictates that the spin wave modes must be doubly degenerate. Theses two modes, distinguished by their opposite polarization and available only in antiferromagnets, give rise to a novel degree of freedom to encode and process information. We show that the spin wave polarization can be manipulated by an electric field induced Dzyaloshinskii-Moriya interaction and magnetic anisotropy. We propose a prototype spin wave field effect transistor which realizes a gate-tunable magnonic analog of the Faraday effect, and demonstrate its application in THz signal modulation. In conclusion, our findings open up the exciting possibility of digital data processing utilizing antiferromagnetic spin waves and enable the direct projection of optical computing concepts onto the mesoscopic scale.

Authors:
 [1];  [1];  [1];  [1]
  1. Carnegie Mellon Univ., Pittsburgh, PA (United States)
Publication Date:
Research Org.:
Carnegie Mellon Univ., Pittsburgh, PA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1254841
Grant/Contract Number:  
SC0012509; EFRI-1433496
Resource Type:
Accepted Manuscript
Journal Name:
Scientific Reports
Additional Journal Information:
Journal Volume: 6; Journal ID: ISSN 2045-2322
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; Spintronics; magnetic properties

Citation Formats

Cheng, Ran, Daniels, Matthew W., Zhu, Jian-Gang, and Xiao, Di. Antiferromagnetic Spin Wave Field-Effect Transistor. United States: N. p., 2016. Web. doi:10.1038/srep24223.
Cheng, Ran, Daniels, Matthew W., Zhu, Jian-Gang, & Xiao, Di. Antiferromagnetic Spin Wave Field-Effect Transistor. United States. doi:10.1038/srep24223.
Cheng, Ran, Daniels, Matthew W., Zhu, Jian-Gang, and Xiao, Di. Wed . "Antiferromagnetic Spin Wave Field-Effect Transistor". United States. doi:10.1038/srep24223. https://www.osti.gov/servlets/purl/1254841.
@article{osti_1254841,
title = {Antiferromagnetic Spin Wave Field-Effect Transistor},
author = {Cheng, Ran and Daniels, Matthew W. and Zhu, Jian-Gang and Xiao, Di},
abstractNote = {In a collinear antiferromagnet with easy-axis anisotropy, symmetry dictates that the spin wave modes must be doubly degenerate. Theses two modes, distinguished by their opposite polarization and available only in antiferromagnets, give rise to a novel degree of freedom to encode and process information. We show that the spin wave polarization can be manipulated by an electric field induced Dzyaloshinskii-Moriya interaction and magnetic anisotropy. We propose a prototype spin wave field effect transistor which realizes a gate-tunable magnonic analog of the Faraday effect, and demonstrate its application in THz signal modulation. In conclusion, our findings open up the exciting possibility of digital data processing utilizing antiferromagnetic spin waves and enable the direct projection of optical computing concepts onto the mesoscopic scale.},
doi = {10.1038/srep24223},
journal = {Scientific Reports},
number = ,
volume = 6,
place = {United States},
year = {2016},
month = {4}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 12 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Transmission of electrical signals by spin-wave interconversion in a magnetic insulator
journal, March 2010


Magnonics
journal, June 2010


The building blocks of magnonics
journal, October 2011


Magnon spintronics
journal, June 2015

  • Chumak, A. V.; Vasyuchka, V. I.; Serga, A. A.
  • Nature Physics, Vol. 11, Issue 6
  • DOI: 10.1038/nphys3347

Realization of spin-wave logic gates
journal, January 2008

  • Schneider, T.; Serga, A. A.; Leven, B.
  • Applied Physics Letters, Vol. 92, Issue 2
  • DOI: 10.1063/1.2834714

Conceptual design of spin wave logic gates based on a Mach–Zehnder-type spin wave interferometer for universal logic functions
journal, September 2008

  • Lee, Ki-Suk; Kim, Sang-Koog
  • Journal of Applied Physics, Vol. 104, Issue 5
  • DOI: 10.1063/1.2975235

Magnon transistor for all-magnon data processing
journal, August 2014

  • Chumak, Andrii V.; Serga, Alexander A.; Hillebrands, Burkard
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms5700

Theory of Antiferromagnetic Resonance
journal, January 1952


Spin Waves in Ferromagnetic and Antiferromagnetic Materials
journal, April 1953

  • Keffer, F.; Kaplan, H.; Yafet, Y.
  • American Journal of Physics, Vol. 21, Issue 4
  • DOI: 10.1119/1.1933416

Spin Oscillations in Antiferromagnetic NiO Triggered by Circularly Polarized Light
journal, August 2010


The vectorial control of magnetization by light
journal, June 2011

  • Kanda, Natsuki; Higuchi, Takuya; Shimizu, Hirokatsu
  • Nature Communications, Vol. 2, Issue 1
  • DOI: 10.1038/ncomms1366

Spin transfer and current-induced switching in antiferromagnets
journal, April 2010


Dynamics of antiferromagnets driven by spin current
journal, February 2014


Spin Pumping and Spin-Transfer Torques in Antiferromagnets
journal, July 2014


A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics
journal, January 1958


Anisotropic Superexchange Interaction and Weak Ferromagnetism
journal, October 1960


Spin Current and Magnetoelectric Effect in Noncollinear Magnets
journal, July 2005


Electronic analog of the electro‐optic modulator
journal, February 1990

  • Datta, Supriyo; Das, Biswajit
  • Applied Physics Letters, Vol. 56, Issue 7
  • DOI: 10.1063/1.102730

Electric Control of Spin Currents and Spin-Wave Logic
journal, June 2011


Electric-Field Coupling to Spin Waves in a Centrosymmetric Ferrite
journal, July 2014


Antiferromagnetic Resonance in Mn F 2
journal, May 1959


Antiferromagnetic Resonance in Fe F 2 at Far-Infrared Frequencies
journal, July 1961


Magnetic anisotropy of antiferromagnetic Rb Mn F 3
journal, August 2014

  • López Ortiz, J. C.; Fonseca Guerra, G. A.; Machado, F. L. A.
  • Physical Review B, Vol. 90, Issue 5
  • DOI: 10.1103/PhysRevB.90.054402

Na Os O 3 : A high Neel temperature 5 d oxide
journal, April 2014


Room-Temperature Reversible Spin Hall Effect
journal, April 2007


Spin Backflow and ac Voltage Generation by Spin Pumping and the Inverse Spin Hall Effect
journal, May 2013


Spin-wave propagation in the presence of interfacial Dzyaloshinskii-Moriya interaction
journal, November 2013


Flexoelectric phase shifter for spin waves
journal, April 2012

  • Liu, Tianyu; Vignale, G.
  • Journal of Applied Physics, Vol. 111, Issue 8
  • DOI: 10.1063/1.4703925

Direct Observation of the Dzyaloshinskii-Moriya Interaction in a Pt/Co/Ni Film
journal, January 2015


    Works referencing / citing this record:

    Topological spin Hall effects and tunable skyrmion Hall effects in uniaxial antiferromagnetic insulators
    journal, June 2019


    Topological spin Hall effects and tunable skyrmion Hall effects in uniaxial antiferromagnetic insulators
    journal, June 2019