skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Impaired Chloroplast Biogenesis in Immutans, an Arabidopsis Variegation Mutant, Modifies Developmental Programming, Cell Wall Composition and Resistance to Pseudomonas syringae

Abstract

The immutans (im) variegation mutation of Arabidopsis has green- and white- sectored leaves due to action of a nuclear recessive gene. IM codes for PTOX, a plastoquinol oxidase in plastid membranes. Previous studies have revealed that the green and white sectors develop into sources (green tissues) and sinks (white tissues) early in leaf development. In this report we focus on white sectors, and show that their transformation into effective sinks involves a sharp reduction in plastid number and size. Despite these reductions, cells in the white sectors have near-normal amounts of plastid RNA and protein, and surprisingly, a marked amplification of chloroplast DNA. The maintenance of protein synthesis capacity in the white sectors might poise plastids for their development into other plastid types. The green and white im sectors have different cell wall compositions: whereas cell walls in the green sectors resemble those in wild type, cell walls in the white sectors have reduced lignin and cellulose microfibrils, as well as alterations in galactomannans and the decoration of xyloglucan. These changes promote susceptibility to the pathogen Pseudomonas syringae. Enhanced susceptibility can also be explained by repressed expression of some, but not all, defense genes. We suggest that differences in morphology,more » physiology and biochemistry between the green and white sectors is caused by a reprogramming of leaf development that is coordinated, in part, by mechanisms of retrograde (plastid-tonucleus) signaling, perhaps mediated by ROS. Lastly, we conclude that variegation mutants offer a novel system to study leaf developmental programming, cell wall metabolism and hostpathogen interactions.« less

Authors:
 [1];  [2];  [2];  [2];  [2];  [2]
  1. Iowa State Univ., Ames, IA (United States); Russian Academy of Sciences (RAS), Moscow (Russian Federation). N.I. Vavilov Institute of General Genetics
  2. Iowa State Univ., Ames, IA (United States)
Publication Date:
Research Org.:
Iowa State Univ., Ames, IA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1254840
Grant/Contract Number:  
FG02-94ER20147
Resource Type:
Accepted Manuscript
Journal Name:
PLoS ONE
Additional Journal Information:
Journal Volume: 11; Journal Issue: 4; Journal ID: ISSN 1932-6203
Publisher:
Public Library of Science
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES

Citation Formats

Pogorelko, Gennady V., Kambakam, Sekhar, Nolan, Trevor, Foudree, Andrew, Zabotina, Olga A., and Rodermel, Steven R. Impaired Chloroplast Biogenesis in Immutans, an Arabidopsis Variegation Mutant, Modifies Developmental Programming, Cell Wall Composition and Resistance to Pseudomonas syringae. United States: N. p., 2016. Web. doi:10.1371/journal.pone.0150983.
Pogorelko, Gennady V., Kambakam, Sekhar, Nolan, Trevor, Foudree, Andrew, Zabotina, Olga A., & Rodermel, Steven R. Impaired Chloroplast Biogenesis in Immutans, an Arabidopsis Variegation Mutant, Modifies Developmental Programming, Cell Wall Composition and Resistance to Pseudomonas syringae. United States. doi:10.1371/journal.pone.0150983.
Pogorelko, Gennady V., Kambakam, Sekhar, Nolan, Trevor, Foudree, Andrew, Zabotina, Olga A., and Rodermel, Steven R. Wed . "Impaired Chloroplast Biogenesis in Immutans, an Arabidopsis Variegation Mutant, Modifies Developmental Programming, Cell Wall Composition and Resistance to Pseudomonas syringae". United States. doi:10.1371/journal.pone.0150983. https://www.osti.gov/servlets/purl/1254840.
@article{osti_1254840,
title = {Impaired Chloroplast Biogenesis in Immutans, an Arabidopsis Variegation Mutant, Modifies Developmental Programming, Cell Wall Composition and Resistance to Pseudomonas syringae},
author = {Pogorelko, Gennady V. and Kambakam, Sekhar and Nolan, Trevor and Foudree, Andrew and Zabotina, Olga A. and Rodermel, Steven R.},
abstractNote = {The immutans (im) variegation mutation of Arabidopsis has green- and white- sectored leaves due to action of a nuclear recessive gene. IM codes for PTOX, a plastoquinol oxidase in plastid membranes. Previous studies have revealed that the green and white sectors develop into sources (green tissues) and sinks (white tissues) early in leaf development. In this report we focus on white sectors, and show that their transformation into effective sinks involves a sharp reduction in plastid number and size. Despite these reductions, cells in the white sectors have near-normal amounts of plastid RNA and protein, and surprisingly, a marked amplification of chloroplast DNA. The maintenance of protein synthesis capacity in the white sectors might poise plastids for their development into other plastid types. The green and white im sectors have different cell wall compositions: whereas cell walls in the green sectors resemble those in wild type, cell walls in the white sectors have reduced lignin and cellulose microfibrils, as well as alterations in galactomannans and the decoration of xyloglucan. These changes promote susceptibility to the pathogen Pseudomonas syringae. Enhanced susceptibility can also be explained by repressed expression of some, but not all, defense genes. We suggest that differences in morphology, physiology and biochemistry between the green and white sectors is caused by a reprogramming of leaf development that is coordinated, in part, by mechanisms of retrograde (plastid-tonucleus) signaling, perhaps mediated by ROS. Lastly, we conclude that variegation mutants offer a novel system to study leaf developmental programming, cell wall metabolism and hostpathogen interactions.},
doi = {10.1371/journal.pone.0150983},
journal = {PLoS ONE},
number = 4,
volume = 11,
place = {United States},
year = {2016},
month = {4}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 2 works
Citation information provided by
Web of Science

Save / Share: