DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Mesons in strong magnetic fields: (I) General analyses

Abstract

Here, we study properties of neutral and charged mesons in strong magnetic fields |eB| >> Λ2QCD with ΛQCD being the QCD renormalization scale. Assuming long-range interactions, we examine magnetic-field dependences of various quantities such as the constituent quark mass, chiral condensate, meson spectra, and meson wavefunctions by analyzing the Schwinger–Dyson and Bethe–Salpeter equations. Based on the density of states obtained from these analyses, we extend the hadron resonance gas (HRG) model to investigate thermodynamics at large B. As B increases the meson energy behaves as a slowly growing function of the meson's transverse momenta, and thus a large number of meson states is accommodated in the low energy domain; the density of states at low temperature is proportional to B2. This extended transverse phase space in the infrared regime significantly enhances the HRG pressure at finite temperature, so that the system reaches the percolation or chiral restoration regime at lower temperature compared to the case without a magnetic field; this simple picture would offer a gauge invariant and intuitive explanation of the inverse magnetic catalysis.

Authors:
 [1];  [2];  [3]
  1. Brookhaven National Lab. (BNL), Upton, NY (United States); Nishina Center, RIKEN, Saitama (Japan)
  2. Central China Normal Univ., Wuhan (China); Univ. of Illinois at Urbana-Champaign, Urbana, IL (United States)
  3. Goethe-Univ. Frankfurt, Frankfurt am Main (Germany)
Publication Date:
Research Org.:
Brookhaven National Laboratory (BNL), Upton, NY (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Nuclear Physics (NP)
OSTI Identifier:
1254125
Report Number(s):
BNL-112145-2016-JA
Journal ID: ISSN 0375-9474; R&D Project: PO-3
Grant/Contract Number:  
SC00112704
Resource Type:
Accepted Manuscript
Journal Name:
Nuclear Physics. A
Additional Journal Information:
Journal Volume: 951; Journal Issue: C; Journal ID: ISSN 0375-9474
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS; Riken BNL Research Center; strong magnetic fields; Meson structure; hadron resonance gas; inverse magnetic catalysis

Citation Formats

Hattori, Koichi, Kojo, Toru, and Su, Nan. Mesons in strong magnetic fields: (I) General analyses. United States: N. p., 2016. Web. doi:10.1016/j.nuclphysa.2016.03.016.
Hattori, Koichi, Kojo, Toru, & Su, Nan. Mesons in strong magnetic fields: (I) General analyses. United States. https://doi.org/10.1016/j.nuclphysa.2016.03.016
Hattori, Koichi, Kojo, Toru, and Su, Nan. Mon . "Mesons in strong magnetic fields: (I) General analyses". United States. https://doi.org/10.1016/j.nuclphysa.2016.03.016. https://www.osti.gov/servlets/purl/1254125.
@article{osti_1254125,
title = {Mesons in strong magnetic fields: (I) General analyses},
author = {Hattori, Koichi and Kojo, Toru and Su, Nan},
abstractNote = {Here, we study properties of neutral and charged mesons in strong magnetic fields |eB| >> Λ2QCD with ΛQCD being the QCD renormalization scale. Assuming long-range interactions, we examine magnetic-field dependences of various quantities such as the constituent quark mass, chiral condensate, meson spectra, and meson wavefunctions by analyzing the Schwinger–Dyson and Bethe–Salpeter equations. Based on the density of states obtained from these analyses, we extend the hadron resonance gas (HRG) model to investigate thermodynamics at large B. As B increases the meson energy behaves as a slowly growing function of the meson's transverse momenta, and thus a large number of meson states is accommodated in the low energy domain; the density of states at low temperature is proportional to B2. This extended transverse phase space in the infrared regime significantly enhances the HRG pressure at finite temperature, so that the system reaches the percolation or chiral restoration regime at lower temperature compared to the case without a magnetic field; this simple picture would offer a gauge invariant and intuitive explanation of the inverse magnetic catalysis.},
doi = {10.1016/j.nuclphysa.2016.03.016},
journal = {Nuclear Physics. A},
number = C,
volume = 951,
place = {United States},
year = {Mon Mar 21 00:00:00 EDT 2016},
month = {Mon Mar 21 00:00:00 EDT 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 35 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Quantum field theory in a magnetic field: From quantum chromodynamics to graphene and Dirac semimetals
journal, April 2015


Strongly Interacting Matter in Magnetic Fields: A Guide to This Volume
book, January 2013

  • Kharzeev, Dmitri E.; Landsteiner, Karl; Schmitt, Andreas
  • Strongly Interacting Matter in Magnetic Fields
  • DOI: 10.1007/978-3-642-37305-3_1

The effects of topological charge change in heavy ion collisions: “Event by event and violation”
journal, May 2008


Particle Production in Strong Electromagnetic Fields in Relativistic Heavy-Ion Collisions
journal, January 2013


Comments about the electromagnetic field in heavy-ion collisions
journal, September 2014


Estimate of the Magnetic Field Strength in Heavy-Ion Collisions
journal, December 2009

  • Skokov, V. V.; Illarionov, A. Yu.; Toneev, V. D.
  • International Journal of Modern Physics A, Vol. 24, Issue 31
  • DOI: 10.1142/S0217751X09047570

Event-by-event fluctuations of magnetic and electric fields in heavy ion collisions
journal, March 2012


Electromagnetic field evolution in relativistic heavy-ion collisions
journal, May 2011


Event-by-event generation of electromagnetic fields in heavy-ion collisions
journal, April 2012


Magnetic fields from cosmological phase transitions
journal, August 1991


Numerical study of chiral symmetry breaking in non-Abelian gauge theory with background magnetic field
journal, January 2010


Anisotropy of the quark-antiquark potential in a magnetic field
journal, June 2014


Dimensional reduction and dynamical chiral symmetry breaking by a magnetic field in 3 + 1 dimensions
journal, April 1995


QCD matter in extreme environments
journal, November 2011


The quark mass gap in a magnetic field
journal, March 2013


On the behavior of symmetry and phase transitions in a strong electromagnetic field
journal, June 1991


Chiral condensate in a constant electromagnetic field
journal, November 2007


Deconfinement and chiral symmetry restoration in a strong magnetic background
journal, February 2011


Phase diagram of hot QCD in an external magnetic field: Possible splitting of deconfinement and chiral transitions
journal, November 2010


Magnetic Catalysis Versus Magnetic Inhibition
journal, January 2013


Inverse magnetic catalysis induced by sphalerons
journal, September 2013


Spontaneous generation of local C P violation and inverse magnetic catalysis
journal, October 2014


Inverse Magnetic Catalysis in the three-flavor NJL model with axial-vector interaction
journal, April 2015


Magnetic and inverse magnetic catalysis in the Bose-Einstein condensation of neutral bound pairs
journal, September 2015


Quark antiscreening at strong magnetic field and inverse magnetic catalysis
journal, March 2015


Importance of asymptotic freedom for the pseudocritical temperature in magnetized quark matter
journal, August 2014


Magnetic catalysis and inverse magnetic catalysis in QCD
journal, June 2015


Phase diagram in an external magnetic field beyond a mean-field approximation
journal, February 2012


QCD effective potential with strong U ( 1 ) em magnetic fields
journal, March 2014


Euler-Heisenberg-Weiss action for QCD + QED
journal, July 2015


Quark gap equation in an external magnetic field
journal, February 2014


Dynamical quark mass generation in a strong external magnetic field
journal, May 2014

  • Mueller, Niklas; Bonnet, Jacqueline A.; Fischer, Christian S.
  • Physical Review D, Vol. 89, Issue 9
  • DOI: 10.1103/PhysRevD.89.094023

A two-dimensional model for mesons
journal, June 1974


Two-dimensional Yang-Mills theory: A model of quark confinement
journal, March 1976


Poincaré- and gauge-invariant two-dimensional quantum chromodynamics
journal, January 1978


Meson spectrum in strong magnetic fields
journal, May 2013


Hadron masses in strong magnetic fields
journal, July 2015


D mesons in a magnetic field
journal, March 2016


Charged vector mesons in a strong magnetic field
journal, May 2013


Magnetic polarizabilities of light mesons in SU ( 3 ) lattice gauge theory
journal, September 2015


Quark–hadron phase transition in a magnetic field
journal, June 2008


Quark-hadron thermodynamics in a magnetic field
journal, March 2014


A renormalization group approach for QCD in a strong magnetic field
journal, November 2013


Quarkyonic chiral spirals
journal, October 2010


Covering the Fermi surface with patches of quarkyonic chiral spirals
journal, October 2010


Interweaving chiral spirals
journal, February 2012


<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2012-01-01">January 2012</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Ferrer, E. J.; [Incera]de la Incera, V.; Sanchez, A.</span> </li> <li> Acta Physica Polonica B Proceedings Supplement, Vol. 5, Issue 3</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.5506/APhysPolBSupp.5.679" class="text-muted" target="_blank" rel="noopener noreferrer">10.5506/APhysPolBSupp.5.679<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1103/PhysRevLett.94.182301" target="_blank" rel="noopener noreferrer" class="name">Equation of State of Gluon Plasma from a Fundamental Modular Region<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2005-05-01">May 2005</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Zwanziger, Daniel</span> </li> <li> Physical Review Letters, Vol. 94, Issue 18</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1103/PhysRevLett.94.182301" class="text-muted" target="_blank" rel="noopener noreferrer">10.1103/PhysRevLett.94.182301<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1103/PhysRevD.76.125014" target="_blank" rel="noopener noreferrer" class="name">Equation of state of gluon plasma from local action<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2007-12-01">December 2007</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Zwanziger, Daniel</span> </li> <li> Physical Review D, Vol. 76, Issue 12</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1103/PhysRevD.76.125014" class="text-muted" target="_blank" rel="noopener noreferrer">10.1103/PhysRevD.76.125014<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1140/epjc/s10052-015-3546-y" target="_blank" rel="noopener noreferrer" class="name">Effect of the Gribov horizon on the Polyakov loop and vice versa<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2015-07-01">July 2015</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Canfora, F. E.; Dudal, D.; Justo, I. F.</span> </li> <li> The European Physical Journal C, Vol. 75, Issue 7</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1140/epjc/s10052-015-3546-y" class="text-muted" target="_blank" rel="noopener noreferrer">10.1140/epjc/s10052-015-3546-y<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1103/PhysRevLett.114.161601" target="_blank" rel="noopener noreferrer" class="name">Massless Mode and Positivity Violation in Hot QCD<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2015-04-01">April 2015</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Su, Nan; Tywoniuk, Konrad</span> </li> <li> Physical Review Letters, Vol. 114, Issue 16</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1103/PhysRevLett.114.161601" class="text-muted" target="_blank" rel="noopener noreferrer">10.1103/PhysRevLett.114.161601<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1103/PhysRevD.90.091501" target="_blank" rel="noopener noreferrer" class="name">Gluon spectral functions and transport coefficients in Yang-Mills theory<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2014-11-01">November 2014</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Haas, Michael; Fister, Leonard; Pawlowski, Jan M.</span> </li> <li> Physical Review D, Vol. 90, Issue 9</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1103/PhysRevD.90.091501" class="text-muted" target="_blank" rel="noopener noreferrer">10.1103/PhysRevD.90.091501<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1103/PhysRevLett.115.112002" target="_blank" rel="noopener noreferrer" class="name">Transport Coefficients in Yang-Mills Theory and QCD<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2015-09-01">September 2015</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Christiansen, Nicolai; Haas, Michael; Pawlowski, Jan M.</span> </li> <li> Physical Review Letters, Vol. 115, Issue 11</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1103/PhysRevLett.115.112002" class="text-muted" target="_blank" rel="noopener noreferrer">10.1103/PhysRevLett.115.112002<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1103/PhysRevLett.104.232301" target="_blank" rel="noopener noreferrer" class="name">Chiral Magnetic Spirals<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2010-06-01">June 2010</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Başar, Gökçe; Dunne, Gerald V.; Kharzeev, Dmitri E.</span> </li> <li> Physical Review Letters, Vol. 104, Issue 23</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1103/PhysRevLett.104.232301" class="text-muted" target="_blank" rel="noopener noreferrer">10.1103/PhysRevLett.104.232301<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> </div> <div class="pagination-container small"> <a class="pure-button prev page" href="#" rel="prev"><span class="sr-only">Previous Page</span><span class="fa fa-angle-left"></span></a> <ul class="pagination d-inline-block" style="padding-left:.2em;"></ul> <a class="pure-button next page" href="#" rel="next"><span class="sr-only">Next Page</span><span class="fa fa-angle-right"></span></a> </div> </div> </div> <div class="col-sm-3 order-sm-3"> <ul class="nav nav-stacked"> <li class="active"><a href="" class="reference-type-filter tab-nav" data-tab="biblio-references" data-filter="type" data-pattern="*"><span class="fa fa-angle-right"></span> All References</a></li> <li class="small" style="margin-left:.75em; text-transform:capitalize;"><a href="" class="reference-type-filter tab-nav" data-tab="biblio-references" data-filter="type" data-pattern="book"><span class="fa fa-angle-right"></span> book<small class="text-muted"> (1)</small></a></li> <li class="small" style="margin-left:.75em; text-transform:capitalize;"><a href="" class="reference-type-filter tab-nav" data-tab="biblio-references" data-filter="type" data-pattern="journal"><span class="fa fa-angle-right"></span> journal<small class="text-muted"> (54)</small></a></li> </ul> <div style="margin-top:2em;"> <form class="pure-form small text-muted reference-search"> <label for="reference-search-text" class="sr-only">Search</label> <input class="search form-control pure-input-1" id="reference-search-text" placeholder="Search" style="margin-bottom:10px;" /> <fieldset aria-label="Sort By"> <legend class="legend-filters sr-only">Sort by:</legend> <div style="margin-left:1em; font-weight:normal; line-height: 1.6em;"><input type="radio" class="sort" name="references-sort" data-sort="name" style="position:relative;top:2px;" id="reference-search-sort-name"><label for="reference-search-sort-name" style="margin-left: .3em;">Sort by title</label></div> <div style="margin-left:1em; font-weight:normal; line-height: 1.6em;"><input type="radio" class="sort" name="references-sort" data-sort="date" data-order="desc" style="position:relative;top:2px;" id="reference-search-sort-date"><label for="reference-search-sort-date" style="margin-left: .3em;">Sort by date</label></div> </fieldset> <div class="text-left" style="margin-left:1em;"> <a href="" class="filter-clear clearfix" title="Clear filter / sort" style="font-weight:normal; float:none;">[ × clear filter / sort ]</a> </div> <input type="submit" id="sort_submit_references" name="submit" aria-label="submit" style="display: none;"/> </form> </div> </div> </div> </section> <section id="biblio-citations" class="tab-content tab-content-sec osti-curated" data-tab="biblio"> <div class="row"> <div class="col-sm-9 order-sm-9"> <div class="padding"> <p class="lead text-muted" style="font-size: 18px; margin-top:0px;">Works referencing / citing this record:</p> <div class="list"> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1007/s41365-016-0178-3" target="_blank" rel="noopener noreferrer" class="name">Novel quantum phenomena induced by strong magnetic fields in heavy-ion collisions<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2017-01-11">January 2017</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Hattori, Koichi; Huang, Xu-Guang</span> </li> <li> Nuclear Science and Techniques, Vol. 28, Issue 2</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1007/s41365-016-0178-3" class="text-muted" target="_blank" rel="noopener noreferrer">10.1007/s41365-016-0178-3<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1140/epja/i2017-12320-8" target="_blank" rel="noopener noreferrer" class="name">Thermo-magnetic effects in quark matter: Nambu-Jona-Lasinio model constrained by lattice QCD<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2017-05-01">May 2017</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Farias, Ricardo L. S.; Timóteo, Varese S.; Avancini, Sidney S.</span> </li> <li> The European Physical Journal A, Vol. 53, Issue 5</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1140/epja/i2017-12320-8" class="text-muted" target="_blank" rel="noopener noreferrer">10.1140/epja/i2017-12320-8<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1103/physrevd.99.056009" target="_blank" rel="noopener noreferrer" class="name">Neutral meson properties in hot and magnetized quark matter: A new magnetic field independent regularization scheme applied to an NJL-type model<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2019-03-01">March 2019</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Avancini, Sidney S.; Farias, Ricardo L. S.; Tavares, William R.</span> </li> <li> Physical Review D, Vol. 99, Issue 5</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1103/physrevd.99.056009" class="text-muted" target="_blank" rel="noopener noreferrer">10.1103/physrevd.99.056009<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1103/physrevd.97.034026" target="_blank" rel="noopener noreferrer" class="name">Meson properties in magnetized quark matter<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2018-02-01">February 2018</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Wang, Ziyue; Zhuang, Pengfei</span> </li> <li> Physical Review D, Vol. 97, Issue 3</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1103/physrevd.97.034026" class="text-muted" target="_blank" rel="noopener noreferrer">10.1103/physrevd.97.034026<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1103/physrevd.94.114032" target="_blank" rel="noopener noreferrer" class="name">Electrical conductivity of quark-gluon plasma in strong magnetic fields<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2016-12-01">December 2016</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Hattori, Koichi; Satow, Daisuke</span> </li> <li> Physical Review D, Vol. 94, Issue 11</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1103/physrevd.94.114032" class="text-muted" target="_blank" rel="noopener noreferrer">10.1103/physrevd.94.114032<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1103/physrevd.96.094009" target="_blank" rel="noopener noreferrer" class="name">Bulk viscosity of quark-gluon plasma in strong magnetic fields<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2017-11-01">November 2017</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Hattori, Koichi; Huang, Xu-Guang; Rischke, Dirk H.</span> </li> <li> Physical Review D, Vol. 96, Issue 9</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1103/physrevd.96.094009" class="text-muted" target="_blank" rel="noopener noreferrer">10.1103/physrevd.96.094009<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> </div> <div class="pagination-container small"> <a class="pure-button prev page" href="#" rel="prev"><span class="sr-only">Previous Page</span><span class="fa fa-angle-left"></span></a> <ul class="pagination d-inline-block" style="padding-left:.2em;"></ul> <a class="pure-button next page" href="#" rel="next"><span class="sr-only">Next Page</span><span class="fa fa-angle-right"></span></a> </div> </div> </div> <div class="col-sm-3 order-sm-3"> <ul class="nav nav-stacked"> <li class="active"><a href="" class="reference-type-filter tab-nav" data-filter="type" data-pattern="*"><span class="fa fa-angle-right"></span> All Cited By</a></li> <li class="small" style="margin-left:.75em; text-transform:capitalize;"><a href="" class="reference-type-filter tab-nav" data-filter="type" data-pattern="journal"><span class="fa fa-angle-right"></span> journal<small class="text-muted"> (6)</small></a></li> </ul> <div style="margin-top:2em;"> <form class="pure-form small text-muted citation-search"> <label for="citation-search-text" class="sr-only">Search</label> <input class="search form-control pure-input-1" id="citation-search-text" placeholder="Search" style="margin-bottom:10px;" /> <fieldset aria-label="Sort By"> <legend class="legend-filters sr-only">Sort by:</legend> <div style="margin-left:1em; font-weight:normal; line-height: 1.6em;"><input type="radio" class="sort" name="references-sort" data-sort="name" style="position:relative;top:2px;" id="citation-search-sort-name"><label for="citation-search-sort-name" style="margin-left: .3em;">Sort by title</label></div> <div style="margin-left:1em; font-weight:normal; line-height: 1.6em;"><input type="radio" class="sort" name="references-sort" data-sort="date" data-order="desc" style="position:relative;top:2px;" id="citation-search-sort-date"><label for="citation-search-sort-date" style="margin-left: .3em;">Sort by date</label></div> </fieldset> <div class="text-left" style="margin-left:1em;"> <a href="" class="filter-clear clearfix" title="Clear filter / sort" style="font-weight:normal; float:none;">[ × clear filter / sort ]</a> </div> <input type="submit" id="sort_submit_citations" name="submit" aria-label="submit" style="display: none;"/> </form> </div> </div> </div> </section> <section id="biblio-related" class="tab-content tab-content-sec " data-tab="biblio"> <div class="row"> <div class="col-sm-9 order-sm-9"> <section id="biblio-similar" class="tab-content tab-content-sec active" data-tab="related"> <div class="padding"> <p class="lead text-muted" style="font-size: 18px; margin-top:0px;">Similar Records in DOE PAGES and OSTI.GOV collections:</p> <aside> <ul class="item-list" itemscope itemtype="http://schema.org/ItemList" style="padding-left:0; list-style-type: none;"> <li> <div class="article item document" itemprop="itemListElement" itemscope itemtype="http://schema.org/WebPage"><meta itemprop="position" content="0" /><div class="item-info"> <h2 class="title" itemprop="name headline"><a href="/biblio/952987-condensates-quantum-chromodynamics-cosmological-constant" itemprop="url">Condensates in Quantum Chromodynamics and the Cosmological Constant</a></h2> <div class="metadata"> <small class="text-muted" style="text-transform:uppercase;display:block;line-height:2.5em;">Journal Article</small><span class="authors"> <span class="author">Brodsky, Stanley J</span> ; <span class="author">Shrock, Robert</span> <span class="text-muted pubdata"> - Submitted to Nuclear Physics B</span> </span> </div> <div class="abstract">Casher and Susskind have noted that in the light-front description, spontaneous chiral symmetry breaking in quantum chromodynamics (QCD) is a property of hadronic wavefunctions and not of the vacuum. Here we show from several physical perspectives that, because of color confinement, quark and gluon QCD condensates are associated with the internal dynamics of hadrons. We discuss condensates using condensed matter analogues, the AdS/CFT correspondence, and the Bethe-Salpeter/Dyson-Schwinger approach for bound states. Our analysis is in agreement with the Casher and Susskind model and the explicit demonstration of 'in-hadron' condensates by Roberts et al., using the Bethe-Salpeter/Dyson-Schwinger formalism for QCD bound<a href='#' onclick='$(this).hide().next().show().next().show();return false;' style='margin-left:10px;'>more »</a><span style='display:none;'> states. These results imply that QCD condensates give zero contribution to the cosmological constant, since all of the gravitational effects of the in-hadron condensates are already included in the normal contribution from hadron masses.</span><a href='#' onclick='$(this).hide().prev().hide().prev().show();return false;' style='margin-left:10px;display:none;'>« less</a></div><div class="metadata-links small clearfix text-muted" style="margin-top:15px;"> <div class="pure-menu pure-menu-horizontal pull-right" style="width:unset;"> <ul class="pure-menu-list"> <li class="pure-menu-item"><span class="item-info-ftlink"><a class="misc fulltext-link " href="/servlets/purl/952987" title="Link to document media" target="_blank" rel="noopener" data-ostiid="952987" data-product-type="Journal Article" data-product-subtype="FT" >Full Text Available</a></span></li> </ul> </div> </div> </div> <div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemprop="itemListElement" itemscope itemtype="http://schema.org/WebPage"><meta itemprop="position" content="1" /><div class="item-info"> <h2 class="title" itemprop="name headline"><a href="/pages/biblio/1501855-intrinsic-transverse-motion-pions-valence-quarks" itemprop="url">Intrinsic Transverse Motion of the Pion’s Valence Quarks</a></h2> <div class="metadata"> <small class="text-muted" style="text-transform:uppercase;display:block;line-height:2.5em;">Journal Article</small><span class="authors"> <span class="author">Shi, Chao</span> ; <span class="author">Cloët, Ian C.</span> <span class="text-muted pubdata"> - Physical Review Letters</span> </span> </div> <div class="abstract">Starting with the solution to the Bethe-Salpeter equation for the pion, in a beyond rainbow-ladder truncation to QCD's Dyson-Schwinger equations, we determine the pion's<a href='#' onclick='$(this).hide().next().show().next().show();return false;' style='margin-left:10px;'>more »</a><span style='display:none;'> $$\mathcal{l}$$<sub>z</sub> = 0 and |$$\mathcal{l}$$<sub>z</sub>| = 1 leading Fock-state light-front wave functions (LFWFs) [labeled by $$\psi$$<sub>$$\mathcal{l}$$<sub>z</sub></sub>($$\mathcal{x}$$, $$\mathcal{k}$$$$2\atop{T}$$)]. The leading-twist time-reversal even transverse momentum dependent parton distribution function (TMD) of the pion is then directly obtained using these LFWFs. A key characteristic of the LFWFs, which is driven by dynamical chiral symmetry breaking, is that at typical hadronic scales they are broad functions in the light-cone momentum fraction $$\mathcal{x}$$. The LFWFs have a nontrivial ($$\mathcal{x}$$, $$\mathcal{k}$$$$2\atop{T}$$)) dependence and in general do not factorize into separate functions of each variable. For $$\mathcal{k}$$$$2\atop{T}$$ ≲ 1 GeV<sup>2</sup> the $$\mathcal{k}$$$$2\atop{T}$$ dependence of the LFWFs is well described by a Gaussian; however for $$\mathcal{k}$$$$2\atop{T}$$ ≳ 10 GeV<sup>2</sup> these LFWFs behave as $$\psi$$<sub>0</sub>∝ $$\mathcal{x}$$(1 - $$\mathcal{x}$$)/$$\mathcal{k}$$$$2\atop{T}$$ and $$\psi$$<sub>1</sub> ∝ $$\mathcal{x}$$(1 - $$\mathcal{x}$$)/$$\mathcal{k}$$$$4\atop{T}$$ and therefore exhibit the power-law behavior predicted by perturbative QCD. The pion's TMD naturally inherits many features from the LFWFs. With this being said, the TMD evolution of our result is studied using both the <em>b*</em> and $$\zeta$$ prescriptions which allows a qualitative comparison with Drell-Yan data.</span><a href='#' onclick='$(this).hide().prev().hide().prev().show();return false;' style='margin-left:10px;display:none;'>« less</a></div><div class="metadata-links small clearfix text-muted" style="margin-top:15px;"> <span class="fa fa-book text-muted" aria-hidden="true"></span> Cited by 19<div class="pure-menu pure-menu-horizontal pull-right" style="width:unset;"> <ul class="pure-menu-list"> <li class="pure-menu-item"><span class="item-info-ftlink"><a class="misc doi-link " href="https://doi.org/10.1103/PhysRevLett.122.082301" target="_blank" rel="noopener" title="Link to document DOI" data-ostiid="1501855" data-product-type="Journal Article" data-product-subtype="AM" >https://doi.org/10.1103/PhysRevLett.122.082301</a></span></li> <li class="pure-menu-item"><span class="item-info-ftlink"><a class="misc fulltext-link " href="/pages/servlets/purl/1501855" title="Link to document media" target="_blank" rel="noopener" data-ostiid="1501855" data-product-type="Journal Article" data-product-subtype="AM" >Full Text Available</a></span></li> </ul> </div> </div> </div> <div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemprop="itemListElement" itemscope itemtype="http://schema.org/WebPage"><meta itemprop="position" content="2" /><div class="item-info"> <h2 class="title" itemprop="name headline"><a href="/biblio/166444-electromagnetic-pion-form-factor" itemprop="url">Electromagnetic pion form factor</a></h2> <div class="metadata"> <small class="text-muted" style="text-transform:uppercase;display:block;line-height:2.5em;">Technical Report</small><span class="authors"> <span class="author">Roberts, C. D.</span> <span class="text-muted pubdata"></span> </span> </div> <div class="abstract">A phenomenological Dyson-Schwinger/Bethe-Salpeter equation approach to QCD, formalized in terms of a QCD-based model field theory, the Global Color-symmetry Model (GCM), was used to calculate the generalized impulse approximation contribution to the electromagnetic pion form factor at space-like q{sup 2} on the domain [0,10] GeV{sup 2}. In effective field theories this form factor is sometimes understood as simply being due to Vector Meson Dominance (VMD) but this does not allow for a simple connection with QCD where the VMD contribution is of higher order than that of the quark core. In the GCM the pion is treated as a composite<a href='#' onclick='$(this).hide().next().show().next().show();return false;' style='margin-left:10px;'>more »</a><span style='display:none;'> bound state of a confined quark and antiquark interacting via the exchange of colored vector-bosons. A direct study of the quark core contribution is made, using a quark propagator that manifests the large space-like-q{sup 2} properties of QCD, parameterizes the infrared behavior and incorporates confinement. It is shown that the few parameters which characterize the infrared form of the quark propagator may be chosen so as to yield excellent agreement with the available data. In doing this one directly relates experimental observables to properties of QCD at small space-like-q{sup 2}. The incorporation of confinement eliminates endpoint and pinch singularities in the calculation of F{sub {pi}}(q{sup 2}). With asymptotic freedom manifest in the dressed quark propagator the calculation yields q{sup 4}F{sub {pi}}(q{sup 2}) = constant, up to [q{sup 2}]- corrections, for space-like-q{sup 2} {approx_gt} 35 GeV{sup 2}, which indicates that soft, nonperturbative contributions dominate the form factor at presently accessible q{sup 2}. This means that the often-used factorization Ansatz fails in this exclusive process. A paper describing this work was submitted for publication. In addition, these results formed the basis for an invited presentation at a workshop on chiral dynamics and will be published in the proceedings.</span><a href='#' onclick='$(this).hide().prev().hide().prev().show();return false;' style='margin-left:10px;display:none;'>« less</a></div><div class="metadata-links small clearfix text-muted" style="margin-top:15px;"> <div class="pure-menu pure-menu-horizontal pull-right" style="width:unset;"> <ul class="pure-menu-list"> <li class="pure-menu-item"><span class="item-info-ftlink"><a class="misc doi-link " href="https://doi.org/10.2172/166444" target="_blank" rel="noopener" title="Link to document DOI" data-ostiid="166444" data-product-type="Technical Report" data-product-subtype="" >https://doi.org/10.2172/166444</a></span></li> <li class="pure-menu-item"><span class="item-info-ftlink"><a class="misc fulltext-link " href="/servlets/purl/166444" title="Link to document media" target="_blank" rel="noopener" data-ostiid="166444" data-product-type="Technical Report" data-product-subtype="" >Full Text Available</a></span></li> </ul> </div> </div> </div> <div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemprop="itemListElement" itemscope itemtype="http://schema.org/WebPage"><meta itemprop="position" content="3" /><div class="item-info"> <h2 class="title" itemprop="name headline"><a href="/biblio/20695769-light-scalar-mesons-improved-ladder-qcd" itemprop="url">Light scalar mesons in the improved ladder QCD</a></h2> <div class="metadata"> <small class="text-muted" style="text-transform:uppercase;display:block;line-height:2.5em;">Journal Article</small><span class="authors"> <span class="author">Umekawa, Toru</span> ; <span class="author">Naito, Kenichi</span> ; <span class="author">Oka, Makoto</span> ; <span class="author">...</span> <span class="text-muted pubdata"> - Physical Review. C, Nuclear Physics</span> </span> </div> <div class="abstract">The light scalar meson spectrum is studied using the improved ladder QCD with the U{sub A}(1) breaking Kobayashi-Maskawa-'t Hooft interaction by solving the Schwinger-Dyson and Bethe-Salpeter equations. The dynamically generated momentum-dependent quark mass is large enough in the low momentum region to give rise to the spontaneous breaking of chiral symmetry. Due to the large dynamical quark mass, the scalar mesons become the qq bound states. Since the parameters have been all fixed to reproduce the light pseudoscalar meson masses and the decay constant, there is no free parameter in the calculation of the scalar mesons. We obtain M{sub {sigma}}=667<a href='#' onclick='$(this).hide().next().show().next().show();return false;' style='margin-left:10px;'>more »</a><span style='display:none;'> MeV, M{sub a{sub 0}}=942 MeV, and M{sub f{sub 0}}=1336 MeV. They are in good agreement with the observed masses of {sigma}(600), a{sub 0}(980), and f{sub 0}(1370), respectively. We therefore conclude that these states are the members of the light scalar meson nonet. The mass of K{sub 0}{sup *} is obtained between that of a{sub 0} and f{sub 0} and the corresponding state is not observed experimentally. We also find that the strangeness content in the {sigma} meson is about 5%.</span><a href='#' onclick='$(this).hide().prev().hide().prev().show();return false;' style='margin-left:10px;display:none;'>« less</a></div><div class="metadata-links small clearfix text-muted" style="margin-top:15px;"> <div class="pure-menu pure-menu-horizontal pull-right" style="width:unset;"> <ul class="pure-menu-list"> <li class="pure-menu-item"><span class="item-info-ftlink"><a class="misc doi-link " href="https://doi.org/10.1103/PhysRevC.70.055205" target="_blank" rel="noopener" title="Link to document DOI" data-ostiid="20695769" data-product-type="Journal Article" data-product-subtype="" >https://doi.org/10.1103/PhysRevC.70.055205</a></span></li> </ul> </div> </div> </div> <div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemprop="itemListElement" itemscope itemtype="http://schema.org/WebPage"><meta itemprop="position" content="4" /><div class="item-info"> <h2 class="title" itemprop="name headline"><a href="/biblio/21175469-low-energy-qcd-from-effective-quark-quark-interaction" itemprop="url">Low energy QCD from an effective quark-quark interaction</a></h2> <div class="metadata"> <small class="text-muted" style="text-transform:uppercase;display:block;line-height:2.5em;">Journal Article</small><span class="authors"> <span class="author">Meissner, Thomas</span> ; <span class="author">Frank, Michael</span> <span class="text-muted pubdata"> - AIP Conference Proceedings</span> </span> </div> <div class="abstract">We consider a model truncation of QCD which is based on an effective quark-quark interaction. The truncation allows for a phenomenological description in a framework which maintains the global symmetries of QCD and permits a 1/N{sub c} expansion. The applied truncation leads to the Schwinger-Dyson equation for the quark self energy in the rainbow approximation, which is solved numerically for a given model form of the gluon 2 point function D(q{sup 2}). Meson bound states appear as solutions of the homogeneous ladder Bethe-Salpeter equation. This approach allows for a detailed and systematic investigation of nonperturbative phenomena at low and intermediate<a href='#' onclick='$(this).hide().next().show().next().show();return false;' style='margin-left:10px;'>more »</a><span style='display:none;'> energies. A systematic chiral low energy expansion is performed leading to a model prediction of all the chiral coefficients (Gasser Leutwyler coefficients). We demonstrate how the U{sub A}(1) anomaly and the splitting between {eta} and {eta}{sup '} can arise in this approach. It turns out that a necessary condition is a 1/q{sup 4} infrared singularity for the gluon 2 point function. Within the truncation a general technique for calculating nonperturbative quark and gluonic vacuum condensates can be developed. We demonstrate this in case of the mixed condensate <q-barG{sigma}q>. Final results for this condensate as well as <q-barq> are presented.</span><a href='#' onclick='$(this).hide().prev().hide().prev().show();return false;' style='margin-left:10px;display:none;'>« less</a></div><div class="metadata-links small clearfix text-muted" style="margin-top:15px;"> <div class="pure-menu pure-menu-horizontal pull-right" style="width:unset;"> <ul class="pure-menu-list"> <li class="pure-menu-item"><span class="item-info-ftlink"><a class="misc doi-link " href="https://doi.org/10.1063/1.54275" target="_blank" rel="noopener" title="Link to document DOI" data-ostiid="21175469" data-product-type="Journal Article" data-product-subtype="" >https://doi.org/10.1063/1.54275</a></span></li> </ul> </div> </div> </div> <div class="clearfix"></div> </div> </li> </ul> </aside> </div> </section> </div> <div class="col-sm-3 order-sm-3"> <ul class="nav nav-stacked"> <li class="active"><a class="tab-nav disabled" data-tab="related" style="color: #636c72 !important; opacity: 1;"><span class="fa fa-angle-right"></span> Similar Records</a></li> </ul> </div> </div> </section> </div></div> </div> </div> </section> <footer class="" style="background-color:#f9f9f9;"> <div class="footer-minor"> <div class="container"> <hr class="footer-separator"/> <br/> <div class="col text-center mt-3"> <div class="pure-menu pure-menu-horizontal"> <ul class="pure-menu-list" id="footer-org-menu"> <li class="pure-menu-item"> <a href="https://energy.gov" target="_blank" rel="noopener noreferrer"> <img src="" class="sprite sprite-footer-us-doe-min" alt="U.S. Department of Energy" /> </a> </li> <li class="pure-menu-item"> <a href="https://www.energy.gov/science/office-science" target="_blank" rel="noopener noreferrer"> <img src="" class="sprite sprite-footer-office-of-science-min" alt="Office of Science" /> </a> </li> <li class="pure-menu-item"> <a href="https://www.osti.gov" target="_blank" rel="noopener noreferrer"> <img src="" class="sprite sprite-footer-osti-min" alt="Office of Scientific and Technical Information" /> </a> </li> </ul> </div> </div> <div class="col text-center small" style="margin-top: 0.5em;margin-bottom:2.0rem;"> <div class="row justify-content-center" style="color:white"> <div class="pure-menu pure-menu-horizontal" style='white-space:normal'> <ul class="pure-menu-list"> <li class="pure-menu-item"><a href="https://www.osti.gov/disclaim" class="pure-menu-link" target="_blank" ref="noopener noreferrer"><span class="fa fa-institution"></span> Website Policies <span class="d-none d-sm-inline d-print-none" style="color:#737373;">/ Important Links</span></a></li> <li class="pure-menu-item" style='float:none;'><a href="/pages/contact" class="pure-menu-link"><span class="fa fa-comments-o"></span>Contact Us</a></li> <li class="d-block d-md-none mb-1"></li> <li class="pure-menu-item" style='float:none;'><a target="_blank" title="Vulnerability Disclosure Program" class="pure-menu-link" href="https://doe.responsibledisclosure.com/hc/en-us" rel="noopener noreferrer">Vulnerability Disclosure Program</a></li> <li class="d-block d-lg-none mb-1"></li> <li class="pure-menu-item" style="float:none;"><a href="https://www.facebook.com/ostigov" target="_blank" class="pure-menu-link social ext fa fa-facebook" rel="noopener noreferrer"><span class="sr-only" style="background-color: #fff; color: #333;">Facebook</span></a></li> <li class="pure-menu-item" style="float:none;"><a href="https://twitter.com/OSTIgov" target="_blank" class="pure-menu-link social ext fa fa-twitter" rel="noopener noreferrer"><span class="sr-only" style="background-color: #fff; color: #333;">Twitter</span></a></li> <li class="pure-menu-item" style="float:none;"><a href="https://www.youtube.com/user/ostigov" target="_blank" class="pure-menu-link social ext fa fa-youtube-play" rel="noopener noreferrer"><span class="sr-only" style="background-color: #fff; color: #333;">Youtube</span></a></li> </ul> </div> </div> </div> </div> </div> </footer> <link href="/pages/css/pages.fonts.240327.0205.css" rel="stylesheet"> <script src="/pages/js/pages.240327.0205.js"></script><noscript></noscript> <script defer src="/pages/js/pages.biblio.240327.0205.js"></script><noscript></noscript> <script defer src="/pages/js/lity.js"></script><noscript></noscript> <script async type="text/javascript" src="/pages/js/Universal-Federated-Analytics-Min.js?agency=DOE" id="_fed_an_ua_tag"></script><noscript></noscript> </body> <!-- DOE PAGES v.240327.0205 --> </html>