skip to main content


Title: Data mining of space heating system performance in affordable housing

The space heating in residential buildings accounts for a considerable amount of the primary energy use. Therefore, understanding the operation and performance of space heating systems becomes crucial in improving occupant comfort while reducing energy use. This study investigated the behavior of occupants adjusting their thermostat settings and heating system operations in a 62-unit affordable housing complex in Revere, Massachusetts, USA. The data mining methods, including clustering approach and decision trees, were used to ascertain occupant behavior patterns. Data tabulating ON/OFF space heating states was assessed, to provide a better understanding of the intermittent operation of space heating systems in terms of system cycling frequency and the duration of each operation. The decision tree was used to verify the link between room temperature settings, house and heating system characteristics and the heating energy use. The results suggest that the majority of apartments show fairly constant room temperature profiles with limited variations during a day or between weekday and weekend. Data clustering results revealed six typical patterns of room temperature profiles during the heating season. Space heating systems cycled more frequently than anticipated due to a tight range of room thermostat settings and potentially oversized heating capacities. In conclusion, from thismore » study affirm data mining techniques are an effective method to analyze large datasets and extract hidden patterns to inform design and improve operations.« less
 [1] ;  [1] ;  [2]
  1. Tsinghua Univ., Beijing (China)
  2. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Publication Date:
Report Number(s):
Journal ID: ISSN 0360-1323; ir:180239
Grant/Contract Number:
Accepted Manuscript
Journal Name:
Building and Environment
Additional Journal Information:
Journal Volume: 89; Journal Issue: C; Journal ID: ISSN 0360-1323
Research Org:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org:
Country of Publication:
United States
97 MATHEMATICS AND COMPUTING; 32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION; data mining; space heating; affordable housing; occupant behavior; building simulation; clustering; decision tree
OSTI Identifier:
Alternate Identifier(s):
OSTI ID: 1247779