skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Lattice Anharmonicity and Thermal Conductivity from Compressive Sensing of First-Principles Calculations

Abstract

First-principles prediction of lattice thermal conductivity K L of strongly anharmonic crystals is a long-standing challenge in solid state physics. Using recent advances in information science, we propose a systematic and rigorous approach to this problem, compressive sensing lattice dynamics (CSLD). Compressive sensing is used to select the physically important terms in the lattice dynamics model and determine their values in one shot. Non-intuitively, high accuracy is achieved when the model is trained on first-principles forces in quasi-random atomic configurations. The method is demonstrated for Si, NaCl, and Cu 12Sb 4S 13, an earth-abundant thermoelectric with strong phononphonon interactions that limit the room-temperature K L to values near the amorphous limit.

Authors:
 [1];  [2];  [2];  [2]
  1. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  2. Univ. of California, Los Angeles, CA (United States). Dept. of Materials Science and Engineering
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC) (United States). Revolutionary Materials for Solid State Energy Conversion (RMSSEC); Univ. of California, Los Angeles, CA (United States); Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1253343
Alternate Identifier(s):
OSTI ID: 1181325
Grant/Contract Number:  
SC0001054; AC52-07NA27344; AC02-05CH11231; DMR-1106024; AC02-05CH11231.
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review Letters
Additional Journal Information:
Journal Volume: 113; Journal Issue: 18; Journal ID: ISSN 0031-9007
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Zhou, Fei, Nielson, Weston, Xia, Yi, and Ozolins, Vidvuds. Lattice Anharmonicity and Thermal Conductivity from Compressive Sensing of First-Principles Calculations. United States: N. p., 2014. Web. doi:10.1103/PhysRevLett.113.185501.
Zhou, Fei, Nielson, Weston, Xia, Yi, & Ozolins, Vidvuds. Lattice Anharmonicity and Thermal Conductivity from Compressive Sensing of First-Principles Calculations. United States. doi:10.1103/PhysRevLett.113.185501.
Zhou, Fei, Nielson, Weston, Xia, Yi, and Ozolins, Vidvuds. Mon . "Lattice Anharmonicity and Thermal Conductivity from Compressive Sensing of First-Principles Calculations". United States. doi:10.1103/PhysRevLett.113.185501. https://www.osti.gov/servlets/purl/1253343.
@article{osti_1253343,
title = {Lattice Anharmonicity and Thermal Conductivity from Compressive Sensing of First-Principles Calculations},
author = {Zhou, Fei and Nielson, Weston and Xia, Yi and Ozolins, Vidvuds},
abstractNote = {First-principles prediction of lattice thermal conductivity KL of strongly anharmonic crystals is a long-standing challenge in solid state physics. Using recent advances in information science, we propose a systematic and rigorous approach to this problem, compressive sensing lattice dynamics (CSLD). Compressive sensing is used to select the physically important terms in the lattice dynamics model and determine their values in one shot. Non-intuitively, high accuracy is achieved when the model is trained on first-principles forces in quasi-random atomic configurations. The method is demonstrated for Si, NaCl, and Cu12Sb4S13, an earth-abundant thermoelectric with strong phononphonon interactions that limit the room-temperature KL to values near the amorphous limit.},
doi = {10.1103/PhysRevLett.113.185501},
journal = {Physical Review Letters},
number = 18,
volume = 113,
place = {United States},
year = {2014},
month = {10}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 41 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Perspectives on thermoelectrics: from fundamentals to device applications
journal, January 2012

  • Zebarjadi, M.; Esfarjani, K.; Dresselhaus, M. S.
  • Energy Environ. Sci., Vol. 5, Issue 1, p. 5147-5162
  • DOI: 10.1039/c1ee02497c

Lower limit to the thermal conductivity of disordered crystals
journal, September 1992

  • Cahill, David G.; Watson, S. K.; Pohl, R. O.
  • Physical Review B, Vol. 46, Issue 10, p. 6131-6140
  • DOI: 10.1103/PhysRevB.46.6131

Stable signal recovery from incomplete and inaccurate measurements
journal, January 2006

  • Candès, Emmanuel J.; Romberg, Justin K.; Tao, Terence
  • Communications on Pure and Applied Mathematics, Vol. 59, Issue 8, p. 1207-1223
  • DOI: 10.1002/cpa.20124

Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information
journal, February 2006

  • Candes, E.J.; Romberg, J.; Tao, T.
  • IEEE Transactions on Information Theory, Vol. 52, Issue 2, p. 489-509
  • DOI: 10.1109/TIT.2005.862083

Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Projector augmented-wave method
journal, December 1994


From ultrasoft pseudopotentials to the projector augmented-wave method
journal, January 1999


High Performance Thermoelectricity in Earth-Abundant Compounds Based on Natural Mineral Tetrahedrites
journal, October 2012

  • Lu, Xu; Morelli, Donald T.; Xia, Yi
  • Advanced Energy Materials, Vol. 3, Issue 3, p. 342-348
  • DOI: 10.1002/aenm.201200650