DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Effect of doping on room temperature carrier escape mechanisms in InAs/GaAs quantum dot p-i-n junction photovoltaic cells

Authors:
 [1];  [1];  [2];  [2]; ORCiD logo [1]
  1. Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, USA
  2. NanoPower Research Laboratory, Rochester Institute of Technology, Rochester, New York 14623, USA
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1253224
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
Journal of Applied Physics
Additional Journal Information:
Journal Name: Journal of Applied Physics Journal Volume: 119 Journal Issue: 19; Journal ID: ISSN 0021-8979
Publisher:
American Institute of Physics
Country of Publication:
United States
Language:
English

Citation Formats

Sellers, D. G., Chen, E. Y., Polly, S. J., Hubbard, S. M., and Doty, M. F. Effect of doping on room temperature carrier escape mechanisms in InAs/GaAs quantum dot p-i-n junction photovoltaic cells. United States: N. p., 2016. Web. doi:10.1063/1.4948954.
Sellers, D. G., Chen, E. Y., Polly, S. J., Hubbard, S. M., & Doty, M. F. Effect of doping on room temperature carrier escape mechanisms in InAs/GaAs quantum dot p-i-n junction photovoltaic cells. United States. https://doi.org/10.1063/1.4948954
Sellers, D. G., Chen, E. Y., Polly, S. J., Hubbard, S. M., and Doty, M. F. Mon . "Effect of doping on room temperature carrier escape mechanisms in InAs/GaAs quantum dot p-i-n junction photovoltaic cells". United States. https://doi.org/10.1063/1.4948954.
@article{osti_1253224,
title = {Effect of doping on room temperature carrier escape mechanisms in InAs/GaAs quantum dot p-i-n junction photovoltaic cells},
author = {Sellers, D. G. and Chen, E. Y. and Polly, S. J. and Hubbard, S. M. and Doty, M. F.},
abstractNote = {},
doi = {10.1063/1.4948954},
journal = {Journal of Applied Physics},
number = 19,
volume = 119,
place = {United States},
year = {Mon May 16 00:00:00 EDT 2016},
month = {Mon May 16 00:00:00 EDT 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1063/1.4948954

Citation Metrics:
Cited by: 5 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Effect of vicinal substrates on the growth and device performance of quantum dot solar cells
journal, January 2013


Theoretical and experimental examination of the intermediate-band concept for strain-balanced (In,Ga)As/Ga(As,P) quantum dot solar cells
journal, November 2008


Effects of electric field on thermal and tunneling carrier escape in InAs/GaAs quantum dot solar cells
conference, March 2014

  • Dai, Yushuai; Polly, Stephen; Hellström, Staffan
  • SPIE OPTO, SPIE Proceedings
  • DOI: 10.1117/12.2040153

Realistic upconverter-enhanced solar cells with non-ideal absorption and recombination efficiencies
journal, August 2011

  • Atre, Ashwin C.; Dionne, Jennifer A.
  • Journal of Applied Physics, Vol. 110, Issue 3
  • DOI: 10.1063/1.3610522

Elements of the design and analysis of quantum-dot intermediate band solar cells
journal, August 2008


Intermediate band solar cells: Recent progress and future directions
journal, June 2015

  • Okada, Y.; Ekins-Daukes, N. J.; Kita, T.
  • Applied Physics Reviews, Vol. 2, Issue 2
  • DOI: 10.1063/1.4916561

Fabrication of InAs/GaAs quantum dot solar cells with enhanced photocurrent and without degradation of open circuit voltage
journal, May 2010

  • Guimard, Denis; Morihara, Ryo; Bordel, Damien
  • Applied Physics Letters, Vol. 96, Issue 20
  • DOI: 10.1063/1.3427392

Evaluation of strain balancing layer thickness for InAs/GaAs quantum dot arrays using high resolution x-ray diffraction and photoluminescence
journal, November 2009

  • Bailey, Christopher G.; Hubbard, Seth M.; Forbes, David V.
  • Applied Physics Letters, Vol. 95, Issue 20
  • DOI: 10.1063/1.3264967

Operation of the intermediate band solar cell under nonideal space charge region conditions and half filling of the intermediate band
journal, May 2006

  • Luque, A.; Martí, A.; López, N.
  • Journal of Applied Physics, Vol. 99, Issue 9
  • DOI: 10.1063/1.2193063

Understanding intermediate-band solar cells
journal, February 2012

  • Luque, Antonio; Martí, Antonio; Stanley, Colin
  • Nature Photonics, Vol. 6, Issue 3
  • DOI: 10.1038/nphoton.2012.1

Open circuit voltage improvement in InAs/GaAs quantum dot solar cells using reduced InAs coverage
conference, June 2011

  • Bailey, Christopher G.; Forbes, David V.; Raffaelle, Ryne P.
  • 2011 37th IEEE Photovoltaic Specialists Conference (PVSC)
  • DOI: 10.1109/PVSC.2011.6186702

Delta-Doping Effects on Quantum-Dot Solar Cells
journal, July 2014


Dark current characteristics of InAs/GaNAs strain-compensated quantum dot solar cells
journal, November 2011

  • Morioka, Takayuki; Okada, Yoshitaka
  • Physica E: Low-dimensional Systems and Nanostructures, Vol. 44, Issue 2
  • DOI: 10.1016/j.physe.2011.09.001

Improving solar cell efficiencies by up-conversion of sub-band-gap light
journal, October 2002

  • Trupke, T.; Green, M. A.; Würfel, P.
  • Journal of Applied Physics, Vol. 92, Issue 7
  • DOI: 10.1063/1.1505677

Analyzing carrier escape mechanisms in InAs/GaAs quantum dot p- i -n junction photovoltaic cells
journal, June 2014

  • Sellers, D. G.; Polly, S.; Hubbard, S. M.
  • Applied Physics Letters, Vol. 104, Issue 22
  • DOI: 10.1063/1.4881181

Effects of quantum dot charging on photoelectron processes and solar cell characteristics
journal, October 2013


Strong Enhancement of Solar Cell Efficiency Due to Quantum Dots with Built-In Charge
journal, June 2011

  • Sablon, Kimberly A.; Little, John W.; Mitin, Vladimir
  • Nano Letters, Vol. 11, Issue 6
  • DOI: 10.1021/nl200543v

Improved efficiency of InAs/GaAs quantum dots solar cells by Si-doping
journal, June 2013


Electronic continuum states and far-infrared absorption of InAs GaAs quantum dots
journal, June 2005


Intermediate-band photovoltaic solar cell based on ZnTe:O
journal, July 2009

  • Wang, Weiming; Lin, Albert S.; Phillips, Jamie D.
  • Applied Physics Letters, Vol. 95, Issue 1
  • DOI: 10.1063/1.3166863

Effect of strain compensation on quantum dot enhanced GaAs solar cells
journal, March 2008

  • Hubbard, S. M.; Cress, C. D.; Bailey, C. G.
  • Applied Physics Letters, Vol. 92, Issue 12
  • DOI: 10.1063/1.2903699

Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells
journal, March 1961

  • Shockley, William; Queisser, Hans J.
  • Journal of Applied Physics, Vol. 32, Issue 3, p. 510-519
  • DOI: 10.1063/1.1736034

Reducing carrier escape in the InAs/GaAs quantum dot intermediate band solar cell
journal, September 2010

  • Antolín, E.; Martí, A.; Farmer, C. D.
  • Journal of Applied Physics, Vol. 108, Issue 6
  • DOI: 10.1063/1.3468520

Increase in photocurrent by optical transitions via intermediate quantum states in direct-doped InAs/GaNAs strain-compensated quantum dot solar cell
journal, January 2011

  • Okada, Yoshitaka; Morioka, Takayuki; Yoshida, Katsuhisa
  • Journal of Applied Physics, Vol. 109, Issue 2
  • DOI: 10.1063/1.3533423

Enhanced carrier collection efficiency and reduced quantum state absorption by electron doping in self-assembled quantum dot solar cells
journal, February 2015

  • Lu, Haofeng; Fu, Lan; Tan, Hark Hoe
  • Applied Physics Letters, Vol. 106, Issue 5
  • DOI: 10.1063/1.4907348

Modeling and analysis of intraband absorption in quantum-dot-in-well mid-infrared photodetectors
journal, February 2012

  • Hong, B. H.; Rybchenko, S. I.; Itskevich, I. E.
  • Journal of Applied Physics, Vol. 111, Issue 3
  • DOI: 10.1063/1.3684603

Efficient upconverted photocurrent through an Auger process in disklike InAs quantum structures for intermediate-band solar cells
journal, June 2013