DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Bond energies of ThO+ and ThC+ : A guided ion beam and quantum chemical investigation of the reactions of thorium cation with O2 and CO

Abstract

Kinetic energy dependent reactions of Th+ with O2 and CO are studied using a guided ion beam tandem mass spectrometer. The formation of ThO+ in the reaction of Th+ with O2 is observed to be exothermic and barrierless with a reaction efficiency at low energies of k/kLGS = 1.21 ± 0.24 similar to the efficiency observed in ion cyclotron resonance experiments. Formation of ThO+ and ThC+ in the reaction of Th+ with CO is endothermic in both cases. The kinetic energy dependent cross sections for formation of these product ions were evaluated to determine 0 K bond dissociation energies (BDEs) of D0(Th+–O) = 8.57 ± 0.14 eV and D0(Th+–C) = 4.82 ± 0.29 eV. The present value of D0(Th+–O) is within experimental uncertainty of previously reported experimental values, whereas this is the first report of D0(Th+–C). Both BDEs are observed to be larger than those of their transition metal congeners, TiL+, ZrL+, and HfL+ (L = O and C), believed to be a result of lanthanide contraction. Additionally, the reactions were explored by quantum chemical calculations, including a full Feller-Peterson-Dixon composite approach with correlation contributions up to coupled-cluster singles and doubles with iterative triples and quadruples (CCSDTQ) for ThC, ThC+,more » ThO, and ThO+, as well as more approximate CCSD with perturbative (triples) [CCSD(T)] calculations where a semi-empirical model was used to estimate spin-orbit energy contributions. In conclusion, the ThO+ BDE is compared to other actinide (An) oxide cation BDEs and a simple model utilizing An+ promotion energies to the reactive state is used to estimate AnO+ and AnC+ BDEs. For AnO+, this model yields predictions that are typically within experimental uncertainty and performs better than density functional theory calculations presented previously.« less

Authors:
ORCiD logo [1];  [1];  [1];  [2]; ORCiD logo [2]
  1. Univ. of Utah, Salt Lake City, UT (United States). Dept. of Chemistry
  2. Washington State Univ., Pullman, WA (United States). Dept. of Chemistry
Publication Date:
Research Org.:
Univ. of Utah, Salt Lake City, UT (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1471100
Alternate Identifier(s):
OSTI ID: 1253063
Grant/Contract Number:  
SC0012249; FG02-12ER16329; SC0008501
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Chemical Physics
Additional Journal Information:
Journal Volume: 144; Journal Issue: 18; Journal ID: ISSN 0021-9606
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Cox, Richard M., Citir, Murat, Armentrout, P. B., Battey, Samuel R., and Peterson, Kirk A. Bond energies of ThO+ and ThC+ : A guided ion beam and quantum chemical investigation of the reactions of thorium cation with O2 and CO. United States: N. p., 2016. Web. doi:10.1063/1.4948812.
Cox, Richard M., Citir, Murat, Armentrout, P. B., Battey, Samuel R., & Peterson, Kirk A. Bond energies of ThO+ and ThC+ : A guided ion beam and quantum chemical investigation of the reactions of thorium cation with O2 and CO. United States. https://doi.org/10.1063/1.4948812
Cox, Richard M., Citir, Murat, Armentrout, P. B., Battey, Samuel R., and Peterson, Kirk A. Sat . "Bond energies of ThO+ and ThC+ : A guided ion beam and quantum chemical investigation of the reactions of thorium cation with O2 and CO". United States. https://doi.org/10.1063/1.4948812. https://www.osti.gov/servlets/purl/1471100.
@article{osti_1471100,
title = {Bond energies of ThO+ and ThC+ : A guided ion beam and quantum chemical investigation of the reactions of thorium cation with O2 and CO},
author = {Cox, Richard M. and Citir, Murat and Armentrout, P. B. and Battey, Samuel R. and Peterson, Kirk A.},
abstractNote = {Kinetic energy dependent reactions of Th+ with O2 and CO are studied using a guided ion beam tandem mass spectrometer. The formation of ThO+ in the reaction of Th+ with O2 is observed to be exothermic and barrierless with a reaction efficiency at low energies of k/kLGS = 1.21 ± 0.24 similar to the efficiency observed in ion cyclotron resonance experiments. Formation of ThO+ and ThC+ in the reaction of Th+ with CO is endothermic in both cases. The kinetic energy dependent cross sections for formation of these product ions were evaluated to determine 0 K bond dissociation energies (BDEs) of D0(Th+–O) = 8.57 ± 0.14 eV and D0(Th+–C) = 4.82 ± 0.29 eV. The present value of D0(Th+–O) is within experimental uncertainty of previously reported experimental values, whereas this is the first report of D0(Th+–C). Both BDEs are observed to be larger than those of their transition metal congeners, TiL+, ZrL+, and HfL+ (L = O and C), believed to be a result of lanthanide contraction. Additionally, the reactions were explored by quantum chemical calculations, including a full Feller-Peterson-Dixon composite approach with correlation contributions up to coupled-cluster singles and doubles with iterative triples and quadruples (CCSDTQ) for ThC, ThC+, ThO, and ThO+, as well as more approximate CCSD with perturbative (triples) [CCSD(T)] calculations where a semi-empirical model was used to estimate spin-orbit energy contributions. In conclusion, the ThO+ BDE is compared to other actinide (An) oxide cation BDEs and a simple model utilizing An+ promotion energies to the reactive state is used to estimate AnO+ and AnC+ BDEs. For AnO+, this model yields predictions that are typically within experimental uncertainty and performs better than density functional theory calculations presented previously.},
doi = {10.1063/1.4948812},
journal = {Journal of Chemical Physics},
number = 18,
volume = 144,
place = {United States},
year = {Sat May 14 00:00:00 EDT 2016},
month = {Sat May 14 00:00:00 EDT 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 39 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Handbook of Basic Atomic Spectroscopic Data
journal, December 2005

  • Sansonetti, J. E.; Martin, W. C.
  • Journal of Physical and Chemical Reference Data, Vol. 34, Issue 4
  • DOI: 10.1063/1.1800011

State-specific reactions of iron(1+)(6D, 4F) with oxygen and oxirane: D.degree.0(iron(1+)-oxygen) and effects of collisional relaxation
journal, April 1989

  • Loh, S. K.; Fisher, Ellen R.; Lian, Li
  • The Journal of Physical Chemistry, Vol. 93, Issue 8
  • DOI: 10.1021/j100345a055

Quadratic configuration interaction. A general technique for determining electron correlation energies
journal, November 1987

  • Pople, John A.; Head‐Gordon, Martin; Raghavachari, Krishnan
  • The Journal of Chemical Physics, Vol. 87, Issue 10
  • DOI: 10.1063/1.453520

An efficient reformulation of the closed‐shell coupled cluster single and double excitation (CCSD) equations
journal, December 1988

  • Scuseria, Gustavo E.; Janssen, Curtis L.; Schaefer, Henry F.
  • The Journal of Chemical Physics, Vol. 89, Issue 12
  • DOI: 10.1063/1.455269

Spectroscopy of the ground and low-lying excited states of ThO+
journal, February 2006

  • Goncharov, Vasiliy; Heaven, Michael C.
  • The Journal of Chemical Physics, Vol. 124, Issue 6
  • DOI: 10.1063/1.2167356

Is coupled cluster singles and doubles (CCSD) more computationally intensive than quadratic configuration interaction (QCISD)?
journal, April 1989

  • Scuseria, Gustavo E.; Schaefer, Henry F.
  • The Journal of Chemical Physics, Vol. 90, Issue 7
  • DOI: 10.1063/1.455827

Reactions of Th + + H 2 , D 2 , and HD Studied by Guided Ion Beam Tandem Mass Spectrometry and Quantum Chemical Calculations
journal, October 2015

  • Cox, Richard M.; Armentrout, P. B.; de Jong, Wibe A.
  • The Journal of Physical Chemistry B, Vol. 120, Issue 8
  • DOI: 10.1021/acs.jpcb.5b08008

Coupled cluster theory for high spin, open shell reference wave functions
journal, October 1993

  • Knowles, Peter J.; Hampel, Claudia; Werner, Hans‐Joachim
  • The Journal of Chemical Physics, Vol. 99, Issue 7
  • DOI: 10.1063/1.465990

A full coupled‐cluster singles and doubles model: The inclusion of disconnected triples
journal, February 1982

  • Purvis, George D.; Bartlett, Rodney J.
  • The Journal of Chemical Physics, Vol. 76, Issue 4
  • DOI: 10.1063/1.443164

Reactions of Pt+ with H2, D2, and HD: Effect of lanthanide contraction on reactivity and thermochemistry
journal, April 2002

  • Zhang, Xiao-Guang; Armentrout, P. B.
  • The Journal of Chemical Physics, Vol. 116, Issue 13
  • DOI: 10.1063/1.1456028

Kinetic energy dependence of Al + +O 2 →AlO + +O
journal, February 1986

  • Weber, M. E.; Elkind, J. L.; Armentrout, P. B.
  • The Journal of Chemical Physics, Vol. 84, Issue 3
  • DOI: 10.1063/1.450497

Evaluated Gas Phase Basicities and Proton Affinities of Molecules; Heats of Formation of Protonated Molecules
journal, July 1984

  • Lias, Sharon G.; Liebman, Joel F.; Levin, Rhoda D.
  • Journal of Physical and Chemical Reference Data, Vol. 13, Issue 3
  • DOI: 10.1063/1.555719

Reactions of Hf+, Ta+, and W+ with O2 and CO: Metal carbide and metal oxide cation bond energies
journal, February 2009

  • Hinton, Christopher S.; Li, Fengxia; Armentrout, P. B.
  • International Journal of Mass Spectrometry, Vol. 280, Issue 1-3
  • DOI: 10.1016/j.ijms.2008.08.025

Energy‐adjusted pseudopotentials for the actinides. Parameter sets and test calculations for thorium and thorium monoxide
journal, May 1994

  • Küchle, W.; Dolg, M.; Stoll, H.
  • The Journal of Chemical Physics, Vol. 100, Issue 10
  • DOI: 10.1063/1.466847

A Comparative Study of Oxo-Ligand Effects in the Gas-Phase Chemistry of Atomic Lanthanide and Actinide Cations
journal, July 1997

  • Cornehl, Hans H.; Wesendrup, Ralf; Diefenbach, Martin
  • Chemistry - A European Journal, Vol. 3, Issue 7
  • DOI: 10.1002/chem.19970030716

Explicitly correlated composite thermochemistry of transition metal species
journal, September 2013

  • Bross, David H.; Hill, J. Grant; Werner, H. -J.
  • The Journal of Chemical Physics, Vol. 139, Issue 9
  • DOI: 10.1063/1.4818725

A new mixing of Hartree–Fock and local density‐functional theories
journal, January 1993

  • Becke, Axel D.
  • The Journal of Chemical Physics, Vol. 98, Issue 2
  • DOI: 10.1063/1.464304

Gas-Phase Energetics of Actinide Oxides: An Assessment of Neutral and Cationic Monoxides and Dioxides from Thorium to Curium
journal, November 2009

  • Marçalo, Joaquim; Gibson, John K.
  • The Journal of Physical Chemistry A, Vol. 113, Issue 45
  • DOI: 10.1021/jp904862a

Comment on: “Estimating the Hartree–Fock limit from finite basis set calculations” [Jensen F (2005) Theor Chem Acc 113:267]
journal, December 2005


Resonant two-photon ionization spectroscopy of jet-cooled OsN: 520–418 nm
journal, September 2011

  • Garcia, Maria A.; Morse, Michael D.
  • The Journal of Chemical Physics, Vol. 135, Issue 11
  • DOI: 10.1063/1.3633694

Collision-induced dissociation of UO+ and UO+2
journal, August 1980


Activation of Methane by Os + : Guided-Ion-Beam and Theoretical Studies
journal, August 2013

  • Armentrout, P. B.; Parke, Laura; Hinton, Christopher
  • ChemPlusChem, Vol. 78, Issue 9
  • DOI: 10.1002/cplu.201300147

Reactions of Y + , Zr + , Nb + , and Mo + with H 2 , HD, and D 2
journal, January 1996

  • Sievers, Michael R.; Chen, Yu-Min; Elkind, J. L.
  • The Journal of Physical Chemistry, Vol. 100, Issue 1
  • DOI: 10.1021/jp952231b

Translational energy dependence of Ar + +XY→ArX + +Y (XY=H 2 ,D 2 ,HD) from thermal to 30 eV c.m.
journal, July 1985

  • Ervin, Kent M.; Armentrout, P. B.
  • The Journal of Chemical Physics, Vol. 83, Issue 1
  • DOI: 10.1063/1.449799

A THERMODYNAMIC STUDY OF THE THORIUM—OXYGEN SYSTEM AT HIGH TEMPERATURES 1
journal, April 1963

  • Ackermann, R. J.; Rauh, E. G.; Thorn, R. J.
  • The Journal of Physical Chemistry, Vol. 67, Issue 4
  • DOI: 10.1021/j100798a010

A new implementation of the full CCSDT model for molecular electronic structure
journal, November 1988


The most reactive third-row transition metal: Guided ion beam and theoretical studies of the activation of methane by Ir+
journal, September 2006

  • Li, Feng-Xia; Zhang, Xiao-Guang; Armentrout, P. B.
  • International Journal of Mass Spectrometry, Vol. 255-256
  • DOI: 10.1016/j.ijms.2006.02.021

Kinetic energy dependence of the reactions of Ru + , Rh + , Pd + , and Ag + with O 2
journal, July 1995

  • Chen, Yu‐Min; Armentrout, P. B.
  • The Journal of Chemical Physics, Vol. 103, Issue 2
  • DOI: 10.1063/1.470095

Guided ion beam study of collision-induced dissociation dynamics: integral and differential cross sections
journal, July 2001

  • Muntean, Felician; Armentrout, P. B.
  • The Journal of Chemical Physics, Vol. 115, Issue 3
  • DOI: 10.1063/1.1371958

Thermochemical properties of gaseous ZrO and ZrO 2
journal, August 1975

  • Murad, Edmond; Hildenbrand, D. L.
  • The Journal of Chemical Physics, Vol. 63, Issue 3
  • DOI: 10.1063/1.431439

Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density
journal, January 1988


Gas-Phase Reactions of Hydrocarbons with An + and AnO + (An = Th, Pa, U, Np, Pu, Am, Cm):  The Active Role of 5f Electrons in Organoprotactinium Chemistry
journal, July 2007

  • Gibson, John K.; Haire, Richard G.; Marçalo, Joaquim
  • Organometallics, Vol. 26, Issue 16
  • DOI: 10.1021/om700329h

Theory of translationally driven reactions
journal, April 1979

  • Chesnavich, Walter J.; Bowers, Michael T.
  • The Journal of Physical Chemistry, Vol. 83, Issue 8
  • DOI: 10.1021/j100471a004

Thermochemistry and Structures of CoC3H6+: Metallacycle and Metal-Alkene Isomers
journal, September 1994

  • Haynes, Chris L.; Armentrout, P. B.
  • Organometallics, Vol. 13, Issue 9
  • DOI: 10.1021/om00021a022

Role of Atomic Electronics in f-Element Bond Formation:  Bond Energies of Lanthanide and Actinide Oxide Molecules
journal, October 2003

  • Gibson, John K.
  • The Journal of Physical Chemistry A, Vol. 107, Issue 39
  • DOI: 10.1021/jp035003n

Bond Energy of IrO + : Guided Ion-Beam and Theoretical Studies of the Reaction of Ir + ( 5 F) with O 2
journal, July 2013

  • Armentrout, P. B.; Li, Feng-Xia
  • The Journal of Physical Chemistry A, Vol. 117, Issue 33
  • DOI: 10.1021/jp4063143

The bond energy of ReO + : Guided ion-beam and theoretical studies of the reaction of Re + ( 7 S) with O 2
journal, August 2013

  • Armentrout, P. B.
  • The Journal of Chemical Physics, Vol. 139, Issue 8
  • DOI: 10.1063/1.4818642

The coupled‐cluster single, double, and triple excitation model for open‐shell single reference functions
journal, October 1990

  • Watts, John D.; Bartlett, Rodney J.
  • The Journal of Chemical Physics, Vol. 93, Issue 8
  • DOI: 10.1063/1.459002

Orbital Radii of Atoms and Ions
journal, June 1965

  • Waber, J. T.; Cromer, Don T.
  • The Journal of Chemical Physics, Vol. 42, Issue 12
  • DOI: 10.1063/1.1695904

Exact decoupling of the Dirac Hamiltonian. II. The generalized Douglas–Kroll–Hess transformation up to arbitrary order
journal, January 2004

  • Reiher, Markus; Wolf, Alexander
  • The Journal of Chemical Physics, Vol. 121, Issue 22
  • DOI: 10.1063/1.1818681

A thermodynamic study of the gaseous thorium carbides, ThC, ThC 2 , ThC 3 , ThC 4 , ThC 5 , and ThC 6
journal, February 1980

  • Gupta, Satish K.; Gingerich, Karl A.
  • The Journal of Chemical Physics, Vol. 72, Issue 4
  • DOI: 10.1063/1.439428

First ionization potentials of some refractory oxide vapors
journal, February 1974

  • Rauh, E. G.; Ackermann, R. J.
  • The Journal of Chemical Physics, Vol. 60, Issue 4
  • DOI: 10.1063/1.1681210

Search for effective local model potentials for simulation of quantum electrodynamic effects in relativistic calculations
journal, March 2003

  • Pyykk , Pekka; Zhao, Li-Bo
  • Journal of Physics B: Atomic, Molecular and Optical Physics, Vol. 36, Issue 8
  • DOI: 10.1088/0953-4075/36/8/302

Relativistic Small-Core Pseudopotentials for Actinium, Thorium, and Protactinium
journal, March 2014

  • Weigand, Anna; Cao, Xiaoyan; Hangele, Tim
  • The Journal of Physical Chemistry A, Vol. 118, Issue 13
  • DOI: 10.1021/jp500215z

Parallel Douglas–Kroll energy and gradients in NWChem: Estimating scalar relativistic effects using Douglas–Kroll contracted basis sets
journal, January 2001

  • de Jong, W. A.; Harrison, R. J.; Dixon, D. A.
  • The Journal of Chemical Physics, Vol. 114, Issue 1
  • DOI: 10.1063/1.1329891

Molecular Spectra and Molecular Structure
book, January 1979


Reactions of U+ and UO+ with O2, CO, CO2, COS, CS2 and D2O
journal, August 1980


State-Specific Reactions of Fe+(a6D,a4F) with D2O and Reactions of FeO+ with D2
journal, June 1994

  • Clemmer, D. E.; Chen, Yu-Min; Khan, Farooq A.
  • The Journal of Physical Chemistry, Vol. 98, Issue 26
  • DOI: 10.1021/j100077a017

Valence basis sets for relativistic energy-consistent small-core actinide pseudopotentials
journal, January 2003

  • Cao, Xiaoyan; Dolg, Michael; Stoll, Hermann
  • The Journal of Chemical Physics, Vol. 118, Issue 2
  • DOI: 10.1063/1.1521431

Formulation and implementation of the relativistic Fock-space coupled cluster method for molecules
journal, December 2001

  • Visscher, Lucas; Eliav, Ephraim; Kaldor, Uzi
  • The Journal of Chemical Physics, Vol. 115, Issue 21
  • DOI: 10.1063/1.1415746

Spectroscopy and Structure of the Simplest Actinide Bonds
journal, October 2014

  • Heaven, Michael C.; Barker, Beau J.; Antonov, Ivan O.
  • The Journal of Physical Chemistry A, Vol. 118, Issue 46
  • DOI: 10.1021/jp507283n

The full CCSDT model for molecular electronic structure
journal, June 1987

  • Noga, Jozef; Bartlett, Rodney J.
  • The Journal of Chemical Physics, Vol. 86, Issue 12
  • DOI: 10.1063/1.452353

Gas-Phase Chemistry of Bare and Oxo-Ligated Protactinium Ions:  A Contribution to a Systematic Understanding of Actinide Chemistry
journal, November 2002

  • Gibson, John K.; Haire, Richard G.
  • Inorganic Chemistry, Vol. 41, Issue 22
  • DOI: 10.1021/ic025683t

Revised ionization energies of the neutral actinides
journal, May 1974

  • Sugar, Jack
  • The Journal of Chemical Physics, Vol. 60, Issue 10
  • DOI: 10.1063/1.1680874

Two-Component Spin-orbit Effective Core Potential Calculations with an All-electron Relativistic Program DIRAC
journal, March 2012

  • Park, Young-Choon; Lim, Ivan S.; Lee, Yoon-Sup
  • Bulletin of the Korean Chemical Society, Vol. 33, Issue 3
  • DOI: 10.5012/bkcs.2012.33.3.803

How accurate are electronic structure methods for actinoid chemistry?
journal, March 2011

  • Averkiev, Boris B.; Mantina, Manjeera; Valero, Rosendo
  • Theoretical Chemistry Accounts, Vol. 129, Issue 3-5
  • DOI: 10.1007/s00214-011-0913-0

Doppler Broadening in Beam Experiments
journal, September 1971

  • Chantry, P. J.
  • The Journal of Chemical Physics, Vol. 55, Issue 6
  • DOI: 10.1063/1.1676489

Ab initio total atomization energies of small molecules — towards the basis set limit
journal, September 1996


Mechanistic Aspects of the Reaction of Th + and Th 2+ with Water in the Gas Phase
journal, March 2008

  • Mazzone, Gloria; Michelini, Maria del Carmen; Russo, Nino
  • Inorganic Chemistry, Vol. 47, Issue 6
  • DOI: 10.1021/ic701789n

Metal oxide and carbide thermochemistry of Y + , Zr + , Nb + , and Mo +
journal, October 1996

  • Sievers, M. R.; Chen, Yu‐Min; Armentrout, P. B.
  • The Journal of Chemical Physics, Vol. 105, Issue 15
  • DOI: 10.1063/1.472485

Higher excitations in coupled-cluster theory
journal, August 2001

  • Kállay, Mihály; Surján, Péter R.
  • The Journal of Chemical Physics, Vol. 115, Issue 7
  • DOI: 10.1063/1.1383290

Determination of the first ionization potential of actinide elements by resonance ionization mass spectroscopy
journal, June 1997

  • Köhler, S.; Deiβenberger, R.; Eberhardt, K.
  • Spectrochimica Acta Part B: Atomic Spectroscopy, Vol. 52, Issue 6
  • DOI: 10.1016/s0584-8547(96)01670-9

Reaction mechanisms and thermochemistry of vanadium ions with ethane, ethene and ethyne
journal, April 1986

  • Aristov, N.; Armentrout, Peter B.
  • Journal of the American Chemical Society, Vol. 108, Issue 8
  • DOI: 10.1021/ja00268a017

Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen
journal, January 1989

  • Dunning, Thom H.
  • The Journal of Chemical Physics, Vol. 90, Issue 2
  • DOI: 10.1063/1.456153

Mass spectrometric studies of gaseous ThO and ThO 2
journal, August 1974

  • Hildenbrand, D. L.; Murad, Edmond
  • The Journal of Chemical Physics, Vol. 61, Issue 3
  • DOI: 10.1063/1.1682000

Quantum electrodynamical corrections to the fine structure of helium
journal, January 1974


Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions
journal, May 1992

  • Kendall, Rick A.; Dunning, Thom H.; Harrison, Robert J.
  • The Journal of Chemical Physics, Vol. 96, Issue 9
  • DOI: 10.1063/1.462569

Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions
journal, January 1980

  • Krishnan, R.; Binkley, J. S.; Seeger, R.
  • The Journal of Chemical Physics, Vol. 72, Issue 1
  • DOI: 10.1063/1.438955

Observation and atomization energies of the gaseous uranium carbides, UC, UC2, UC3, UC4, UC5, and UC6 by high temperature mass spectrometry
journal, January 1979

  • Gupta, Satish K.; Gingerich, Karl A.
  • The Journal of Chemical Physics, Vol. 71, Issue 7
  • DOI: 10.1063/1.438713

Reactions of N+4 with rare gases from thermal to 10eV center-of-mass energy: collision-induced dissociation, charge transfer and ligand exchange
journal, June 1991

  • Schultz, Richard H.; Armentrout, P. B.
  • International Journal of Mass Spectrometry and Ion Processes, Vol. 107, Issue 1
  • DOI: 10.1016/0168-1176(91)85072-T

Properties of ThF x from Infrared Spectra in Solid Argon and Neon with Supporting Electronic Structure and Thermochemical Calculations
journal, March 2014

  • Thanthiriwatte, K. Sahan; Wang, Xuefeng; Andrews, Lester
  • The Journal of Physical Chemistry A, Vol. 118, Issue 11
  • DOI: 10.1021/jp412818r

Dehydrogenation of Methane by Gas-Phase Th, Th + , and Th 2+ : Theoretical Insights into Actinide Chemistry
journal, September 2010

  • de Almeida, K. J.; Duarte, H. A.
  • Organometallics, Vol. 29, Issue 17
  • DOI: 10.1021/om100156r

The coupled‐cluster single, double, triple, and quadruple excitation method
journal, September 1992

  • Kucharski, Stanislaw A.; Bartlett, Rodney J.
  • The Journal of Chemical Physics, Vol. 97, Issue 6
  • DOI: 10.1063/1.463930

Activation of CH 4 by Th + as Studied by Guided Ion Beam Mass Spectrometry and Quantum Chemistry
journal, March 2015


Probing actinide electronic structure using fluorescence and multi-photon ionization spectroscopy
journal, January 2006

  • Heaven, Michael C.
  • Physical Chemistry Chemical Physics, Vol. 8, Issue 39
  • DOI: 10.1039/b607486c

Reactions of fourth‐period metal ions (Ca + −Zn + ) with O 2 : Metal‐oxide ion bond energies
journal, August 1990

  • Fisher, Ellen R.; Elkind, J. L.; Clemmer, D. E.
  • The Journal of Chemical Physics, Vol. 93, Issue 4
  • DOI: 10.1063/1.458906

Is the Lamb shift chemically significant?
journal, November 2001

  • Dyall, Kenneth G.; Bauschlicher, Charles W.; Schwenke, David W.
  • Chemical Physics Letters, Vol. 348, Issue 5-6
  • DOI: 10.1016/S0009-2614(01)01162-9

Recursive intermediate factorization and complete computational linearization of the coupled-cluster single, double, triple, and quadruple excitation equations
journal, January 1991

  • Kucharski, Stanislaw A.; Bartlett, Rodney J.
  • Theoretica Chimica Acta, Vol. 80, Issue 4-5
  • DOI: 10.1007/BF01117419

Activation of Ethane C−H and C−C Bonds by Gas Phase Th + and U + : A Theoretical Study
journal, December 2009

  • Di Santo, E.; Michelini, M. C.; Russo, N.
  • The Journal of Physical Chemistry A, Vol. 113, Issue 52
  • DOI: 10.1021/jp9048154

Ionization Energies for the Actinide Mono- and Dioxides Series, from Th to Cm: Theory versus Experiment
journal, May 2010

  • Infante, Ivan; Kovacs, Attila; Macchia, Giovanni La
  • The Journal of Physical Chemistry A, Vol. 114, Issue 19
  • DOI: 10.1021/jp1016328

Collision‐induced dissociation of Fe + n ( n =2–10) with Xe: Ionic and neutral iron binding energies
journal, May 1989

  • Loh, S. K.; Hales, David A.; Lian, Li
  • The Journal of Chemical Physics, Vol. 90, Issue 10
  • DOI: 10.1063/1.456452

Density‐functional thermochemistry. III. The role of exact exchange
journal, April 1993

  • Becke, Axel D.
  • The Journal of Chemical Physics, Vol. 98, Issue 7, p. 5648-5652
  • DOI: 10.1063/1.464913

Integral cross sections for ion—molecule reactions. I. The guided beam technique
journal, June 1974


FTICR/MS studies of gas-phase actinide ion reactions: fundamental chemical and physical properties of atomic and molecular actinide ions and neutrals
journal, May 2007


Actinide sulfides in the gas phase: experimental and theoretical studies of the thermochemistry of AnS (An = Ac, Th, Pa, U, Np, Pu, Am and Cm)
journal, January 2011

  • Pereira, Cláudia C. L.; Marsden, Colin J.; Marçalo, Joaquim
  • Physical Chemistry Chemical Physics, Vol. 13, Issue 28
  • DOI: 10.1039/c1cp20996e

Generalized gradient approximation for the exchange-correlation hole of a many-electron system
journal, December 1996


Bonding in Cationic MCH 2 + (M=K-La, Hf-Rn): A Theoretical Study on Periodic Trends
journal, April 2010

  • Zhang, Xinhao; Schwarz, Helmut
  • Chemistry - A European Journal, Vol. 16, Issue 20
  • DOI: 10.1002/chem.201000567

Multireference coupled‐cluster method using a single‐reference formalism
journal, January 1991

  • Oliphant, Nevin; Adamowicz, Ludwik
  • The Journal of Chemical Physics, Vol. 94, Issue 2
  • DOI: 10.1063/1.460031

Gas-Phase Oxidation Reactions of Neptunium and Plutonium Ions Investigated via Fourier Transform Ion Cyclotron Resonance Mass Spectrometry
journal, August 2002

  • Santos, Marta; Marçalo, Joaquim; Pires de Matos, António
  • The Journal of Physical Chemistry A, Vol. 106, Issue 31
  • DOI: 10.1021/jp025733f

Gaussian basis sets for use in correlated molecular calculations. V. Core‐valence basis sets for boron through neon
journal, September 1995

  • Woon, David E.; Dunning, Thom H.
  • The Journal of Chemical Physics, Vol. 103, Issue 11
  • DOI: 10.1063/1.470645

Thermochemical Data for Gaseous Monoxides
journal, October 1983

  • Pedley, J. B.; Marshall, E. M.
  • Journal of Physical and Chemical Reference Data, Vol. 12, Issue 4
  • DOI: 10.1063/1.555698

The Thermodynamic Properties of the f -Elements and their Compounds. Part 2. The Lanthanide and Actinide Oxides
journal, March 2014

  • Konings, Rudy J. M.; Beneš, Ondrej; Kovács, Attila
  • Journal of Physical and Chemical Reference Data, Vol. 43, Issue 1
  • DOI: 10.1063/1.4825256

Methane C−H Bond Activation by Gas-Phase Th + and U + : Reaction Mechanisms and Bonding Analysis
journal, July 2009

  • Di Santo, Emanuela; Michelini, Maria del Carmen; Russo, Nino
  • Organometallics, Vol. 28, Issue 13
  • DOI: 10.1021/om900156f

Relativistic and correlated calculations on the ground and excited states of ThO
journal, July 2003

  • Paulovič, Jozef; Nakajima, Takahito; Hirao, Kimihiko
  • The Journal of Chemical Physics, Vol. 119, Issue 2
  • DOI: 10.1063/1.1578053

Toward reliable density functional methods without adjustable parameters: The PBE0 model
journal, April 1999

  • Adamo, Carlo; Barone, Vincenzo
  • The Journal of Chemical Physics, Vol. 110, Issue 13
  • DOI: 10.1063/1.478522

Correlation consistent basis sets for actinides. I. The Th and U atoms
journal, February 2015

  • Peterson, Kirk A.
  • The Journal of Chemical Physics, Vol. 142, Issue 7
  • DOI: 10.1063/1.4907596

Ab Initio Molecular Dynamics Study of the Reaction between Th + and H 2 O
journal, August 2010

  • Zhou, Jia; Schlegel, H. Bernhard
  • The Journal of Physical Chemistry A, Vol. 114, Issue 33
  • DOI: 10.1021/jp912098w

Matrix Infrared Spectra and Theoretical Studies of Thorium Oxide Species: ThO x and Th 2 O y
journal, December 2011

  • Andrews, Lester; Gong, Yu; Liang, Binyong
  • The Journal of Physical Chemistry A, Vol. 115, Issue 50
  • DOI: 10.1021/jp208926m

Accurate correlation consistent basis sets for molecular core–valence correlation effects: The second row atoms Al–Ar, and the first row atoms B–Ne revisited
journal, December 2002

  • Peterson, Kirk A.; Dunning, Thom H.
  • The Journal of Chemical Physics, Vol. 117, Issue 23
  • DOI: 10.1063/1.1520138

Oxidation reactions at variably sized transition metal centers: Fe + n and Nb + n +O 2 ( n =1–3)
journal, November 1989

  • Loh, S. K.; Lian, Li; Armentrout, P. B.
  • The Journal of Chemical Physics, Vol. 91, Issue 10
  • DOI: 10.1063/1.457434

Reaction of Sc + , Ti + , and V + with CO. MC + and MO + bond energies
journal, September 1991

  • Clemmer, D. E.; Elkind, J. L.; Aristov, N.
  • The Journal of Chemical Physics, Vol. 95, Issue 5
  • DOI: 10.1063/1.460844

Reactions of Gaseous Molecule Ions with Gaseous Molecules. V. Theory
journal, August 1958

  • Gioumousis, George; Stevenson, D. P.
  • The Journal of Chemical Physics, Vol. 29, Issue 2
  • DOI: 10.1063/1.1744477

Computed Vibrational Frequencies of Actinide Oxides AnO 0/+/2+ and AnO 2 0/+/2+ (An = Th, Pa, U, Np, Pu, Am, Cm)
journal, June 2011

  • Kovács, Attila; Konings, Rudy J. M.
  • The Journal of Physical Chemistry A, Vol. 115, Issue 24
  • DOI: 10.1021/jp202538k

Kinetic energy dependence of ion–molecule reactions: guided ion beams and threshold measurements
journal, December 2000


Potential Energy Surface for Activation of Methane by Pt + :  A Combined Guided Ion Beam and DFT Study
journal, June 2001

  • Zhang, Xiao-Guang; Liyanage, Rohana; Armentrout, P. B.
  • Journal of the American Chemical Society, Vol. 123, Issue 23
  • DOI: 10.1021/ja010382o

Reliable Potential Energy Surfaces for the Reactions of H 2 O with ThO 2 , PaO 2 + , UO 2 2+ , and UO 2 +
journal, November 2015

  • Vasiliu, Monica; Peterson, Kirk A.; Gibson, John K.
  • The Journal of Physical Chemistry A, Vol. 119, Issue 46
  • DOI: 10.1021/acs.jpca.5b08618

Activation of O 2 , CO, and CO 2 by Pt + :  The Thermochemistry of PtO +
journal, October 2003

  • Zhang, Xiao-Guang; Armentrout, P. B.
  • The Journal of Physical Chemistry A, Vol. 107, Issue 42
  • DOI: 10.1021/jp036014j

Reactions of Fe+, Co+, and Ni+ with Silane. Electronic State Effects, Comparison to Reactions with Methane, and M+-SiHx (x = 0-3) Bond Energies
journal, January 1995

  • Kickel, Bernice L.; Armentrout, P. B.
  • Journal of the American Chemical Society, Vol. 117, Issue 2
  • DOI: 10.1021/ja00107a020

Formulation and implementation of a relativistic unrestricted coupled‐cluster method including noniterative connected triples
journal, November 1996

  • Visscher, Lucas; Lee, Timothy J.; Dyall, Kenneth G.
  • The Journal of Chemical Physics, Vol. 105, Issue 19
  • DOI: 10.1063/1.472655

A survey of factors contributing to accurate theoretical predictions of atomization energies and molecular structures
journal, November 2008

  • Feller, David; Peterson, Kirk A.; Dixon, David A.
  • The Journal of Chemical Physics, Vol. 129, Issue 20
  • DOI: 10.1063/1.3008061

Probing Actinide Electronic Structure Using Fluorescence and Multi-photon Ionization Spectroscopy
journal, December 2006


Molecular Spectra and Molecular Structure
journal, November 1929

  • Garner, W. E.; Lennard-Jones, J. E.
  • Nature, Vol. 124, Issue 3133
  • DOI: 10.1038/124762b0

Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density
text, January 1988

  • Robert, Parr,; Chengteh, Lee,; Weitao, Yang,
  • The University of North Carolina at Chapel Hill University Libraries
  • DOI: 10.17615/zrp0-ry04

Molecular Spectra and Molecular Structure
journal, October 1929

  • Garner, W. E.; Lennard-Jones, J. E.
  • Nature, Vol. 124, Issue 3128
  • DOI: 10.1038/124584a0

Works referencing / citing this record:

Correlation consistent basis sets for lanthanides: The atoms La–Lu
journal, August 2016

  • Lu, Qing; Peterson, Kirk A.
  • The Journal of Chemical Physics, Vol. 145, Issue 5
  • DOI: 10.1063/1.4959280

Correlation consistent basis sets for actinides. II. The atoms Ac and Np–Lr
journal, August 2017

  • Feng, Rulin; Peterson, Kirk A.
  • The Journal of Chemical Physics, Vol. 147, Issue 8
  • DOI: 10.1063/1.4994725

Bond dissociation energies of TiC, ZrC, HfC, ThC, NbC, and TaC
journal, July 2018

  • Sevy, Andrew; Matthew, Daniel J.; Morse, Michael D.
  • The Journal of Chemical Physics, Vol. 149, Issue 4
  • DOI: 10.1063/1.5041422

Evaluation of the exothermicity of the chemi-ionization reaction Nd + O → NdO + + e and neodymium oxide, carbide, dioxide, and carbonyl cation bond energies
journal, April 2019

  • Ghiassee, Maryam; Kim, JungSoo; Armentrout, P. B.
  • The Journal of Chemical Physics, Vol. 150, Issue 14
  • DOI: 10.1063/1.5091679

Bond dissociation energy of Au 2 + : A guided ion beam and theoretical investigation
journal, May 2019

  • Owen, Cameron J.; Keyes, Nicholas R.; Xie, Changjian
  • The Journal of Chemical Physics, Vol. 150, Issue 17
  • DOI: 10.1063/1.5092957

Bond energy of ThN + : A guided ion beam and quantum chemical investigation of the reactions of thorium cation with N 2 and NO
journal, July 2019

  • Cox, Richard M.; Kafle, Arjun; Armentrout, P. B.
  • The Journal of Chemical Physics, Vol. 151, Issue 3
  • DOI: 10.1063/1.5111534

Spectroscopic and theoretical studies of ThCl and ThCl +
journal, February 2017

  • VanGundy, Robert A.; Bartlett, Joshua H.; Heaven, Michael C.
  • The Journal of Chemical Physics, Vol. 146, Issue 5
  • DOI: 10.1063/1.4975070