skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: All-Soluble All-Iron Aqueous Redox-Flow Battery

Abstract

The rapid growth of intermittent renewable energy (e.g., wind and solar) demands low-cost and large-scale energy storage systems for smooth and reliable power output, where redox-flow batteries (RFBs) could find their niche. In this work, we introduce the first all-soluble all-iron RFB based on iron as the same redox-active element but with different coordination chemistries in alkaline aqueous system. The adoption of the same redox-active element largely alleviates the challenging problem of cross-contamination of metal ions in RFBs that use two redox-active elements. An all-soluble all-iron RFB is constructed by combining an iron–triethanolamine redox pair (i.e., [Fe(TEOA)OH]/[Fe(TEOA)(OH)]2–) and an iron–cyanide redox pair (i.e., Fe(CN)6 3–/Fe(CN)6 4–), creating 1.34 V of formal cell voltage. Furthermore, good performance and stability have been demonstrated, after addressing some challenges, including the crossover of the ligand agent. As exemplified by the all-soluble all-iron flow battery, combining redox pairs of the same redox-active element with different coordination chemistries could extend the spectrum of RFBs.

Authors:
 [1];  [1];  [1];  [1];  [1];  [2];  [1]
  1. Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
  2. Department of Mechanical Engineering, Wichita State University, 1845 Fairmount Street, Wichita, Kansas 67260, United States
Publication Date:
Research Org.:
Wichita State Univ., Wichita, KS (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1252078
Alternate Identifier(s):
OSTI ID: 1267248
Grant/Contract Number:  
AR0000346
Resource Type:
Published Article
Journal Name:
ACS Energy Letters
Additional Journal Information:
Journal Name: ACS Energy Letters Journal Volume: 1 Journal Issue: 1; Journal ID: ISSN 2380-8195
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; 36 MATERIALS SCIENCE

Citation Formats

Gong, Ke, Xu, Fei, Grunewald, Jonathan B., Ma, Xiaoya, Zhao, Yun, Gu, Shuang, and Yan, Yushan. All-Soluble All-Iron Aqueous Redox-Flow Battery. United States: N. p., 2016. Web. https://doi.org/10.1021/acsenergylett.6b00049.
Gong, Ke, Xu, Fei, Grunewald, Jonathan B., Ma, Xiaoya, Zhao, Yun, Gu, Shuang, & Yan, Yushan. All-Soluble All-Iron Aqueous Redox-Flow Battery. United States. https://doi.org/10.1021/acsenergylett.6b00049
Gong, Ke, Xu, Fei, Grunewald, Jonathan B., Ma, Xiaoya, Zhao, Yun, Gu, Shuang, and Yan, Yushan. Mon . "All-Soluble All-Iron Aqueous Redox-Flow Battery". United States. https://doi.org/10.1021/acsenergylett.6b00049.
@article{osti_1252078,
title = {All-Soluble All-Iron Aqueous Redox-Flow Battery},
author = {Gong, Ke and Xu, Fei and Grunewald, Jonathan B. and Ma, Xiaoya and Zhao, Yun and Gu, Shuang and Yan, Yushan},
abstractNote = {The rapid growth of intermittent renewable energy (e.g., wind and solar) demands low-cost and large-scale energy storage systems for smooth and reliable power output, where redox-flow batteries (RFBs) could find their niche. In this work, we introduce the first all-soluble all-iron RFB based on iron as the same redox-active element but with different coordination chemistries in alkaline aqueous system. The adoption of the same redox-active element largely alleviates the challenging problem of cross-contamination of metal ions in RFBs that use two redox-active elements. An all-soluble all-iron RFB is constructed by combining an iron–triethanolamine redox pair (i.e., [Fe(TEOA)OH]–/[Fe(TEOA)(OH)]2–) and an iron–cyanide redox pair (i.e., Fe(CN)6 3–/Fe(CN)6 4–), creating 1.34 V of formal cell voltage. Furthermore, good performance and stability have been demonstrated, after addressing some challenges, including the crossover of the ligand agent. As exemplified by the all-soluble all-iron flow battery, combining redox pairs of the same redox-active element with different coordination chemistries could extend the spectrum of RFBs.},
doi = {10.1021/acsenergylett.6b00049},
journal = {ACS Energy Letters},
number = 1,
volume = 1,
place = {United States},
year = {2016},
month = {5}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1021/acsenergylett.6b00049

Citation Metrics:
Cited by: 13 works
Citation information provided by
Web of Science

Save / Share:

Works referencing / citing this record:

An Fe III Azamacrocyclic Complex as a pH-Tunable Catholyte and Anolyte for Redox-Flow Battery Applications
journal, October 2017

  • Tsitovich, Pavel B.; Kosswattaarachchi, Anjula M.; Crawley, Matthew R.
  • Chemistry - A European Journal, Vol. 23, Issue 61
  • DOI: 10.1002/chem.201704381

Organic Functionalization of Polyoxovanadate–Alkoxide Clusters: Improving the Solubility of Multimetallic Charge Carriers for Nonaqueous Redox Flow Batteries
journal, November 2018

  • VanGelder, Lauren E.; Petel, Brittney E.; Nachtigall, Olaf
  • ChemSusChem, Vol. 11, Issue 23
  • DOI: 10.1002/cssc.201802029

Redox non-innocent bis(2,6-diimine-pyridine) ligand–iron complexes as anolytes for flow battery applications
journal, January 2017

  • Duarte, Gabriel M.; Braun, Jason D.; Giesbrecht, Patrick K.
  • Dalton Transactions, Vol. 46, Issue 47
  • DOI: 10.1039/c7dt03915h

Methanesulfonic acid-based electrode-decoupled vanadium–cerium redox flow battery exhibits significantly improved capacity and cycle life
journal, January 2019

  • Sankarasubramanian, Shrihari; Zhang, Yunzhu; Ramani, Vijay
  • Sustainable Energy & Fuels, Vol. 3, Issue 9
  • DOI: 10.1039/c9se00286c

An Fe III Azamacrocyclic Complex as a pH-Tunable Catholyte and Anolyte for Redox-Flow Battery Applications
journal, October 2017

  • Tsitovich, Pavel B.; Kosswattaarachchi, Anjula M.; Crawley, Matthew R.
  • Chemistry - A European Journal, Vol. 23, Issue 61
  • DOI: 10.1002/chem.201704381

Organic Functionalization of Polyoxovanadate–Alkoxide Clusters: Improving the Solubility of Multimetallic Charge Carriers for Nonaqueous Redox Flow Batteries
journal, November 2018

  • VanGelder, Lauren E.; Petel, Brittney E.; Nachtigall, Olaf
  • ChemSusChem, Vol. 11, Issue 23
  • DOI: 10.1002/cssc.201802029

Redox non-innocent bis(2,6-diimine-pyridine) ligand–iron complexes as anolytes for flow battery applications
journal, January 2017

  • Duarte, Gabriel M.; Braun, Jason D.; Giesbrecht, Patrick K.
  • Dalton Transactions, Vol. 46, Issue 47
  • DOI: 10.1039/c7dt03915h

Methanesulfonic acid-based electrode-decoupled vanadium–cerium redox flow battery exhibits significantly improved capacity and cycle life
journal, January 2019

  • Sankarasubramanian, Shrihari; Zhang, Yunzhu; Ramani, Vijay
  • Sustainable Energy & Fuels, Vol. 3, Issue 9
  • DOI: 10.1039/c9se00286c

Boosting the energy efficiency and power performance of neutral aqueous organic redox flow batteries
journal, January 2017

  • Hu, Bo; Seefeldt, Christopher; DeBruler, Camden
  • Journal of Materials Chemistry A, Vol. 5, Issue 42
  • DOI: 10.1039/c7ta06573f

Advanced Materials for Zinc‐Based Flow Battery: Development and Challenge
journal, July 2019


Gradient-Distributed Metal-Organic Framework-Based Porous Membranes for Nonaqueous Redox Flow Batteries
journal, October 2018

  • Peng, Sangshan; Zhang, Leyuan; Zhang, Changkun
  • Advanced Energy Materials, Vol. 8, Issue 33
  • DOI: 10.1002/aenm.201802533

Oxa-Michael Addition to α,β-Unsaturated Nitriles: An Expedient Route to γ-Amino Alcohols and Derivatives
journal, May 2018

  • Guo, Beibei; Zijlstra, Douwe S.; de Vries, Johannes G.
  • ChemCatChem, Vol. 10, Issue 13
  • DOI: 10.1002/cctc.201800509

Aqueous Flow Batteries: Research and Development
journal, November 2018

  • Liu, Wanqiu; Lu, Wenjing; Zhang, Huamin
  • Chemistry - A European Journal, Vol. 25, Issue 7
  • DOI: 10.1002/chem.201802798

A novel vanadium/cobalt redox couple in aqueous acidic solution for redox flow batteries
journal, September 2019

  • Kocyigit, Nilufer; Gencten, Metin; Sahin, Mutlu
  • International Journal of Energy Research, Vol. 44, Issue 1
  • DOI: 10.1002/er.4938

Iron-based flow batteries to store renewable energies
journal, February 2018

  • Dinesh, Anarghya; Olivera, Sharon; Venkatesh, Krishna
  • Environmental Chemistry Letters, Vol. 16, Issue 3
  • DOI: 10.1007/s10311-018-0709-8

Material design and engineering of next-generation flow-battery technologies
journal, November 2016


Negatively charged nanoporous membrane for a dendrite-free alkaline zinc-based flow battery with long cycle life
journal, September 2018


High energy density MnO 4 /MnO 4 2− redox couple for alkaline redox flow batteries
journal, January 2016

  • Colli, Alejandro N.; Peljo, Pekka; Girault, Hubert H.
  • Chemical Communications, Vol. 52, Issue 97
  • DOI: 10.1039/c6cc08070g

Molecular engineering of organic electroactive materials for redox flow batteries
journal, January 2018

  • Ding, Yu; Zhang, Changkun; Zhang, Leyuan
  • Chemical Society Reviews, Vol. 47, Issue 1
  • DOI: 10.1039/c7cs00569e

The effect of adding Bi 3+ on the performance of a newly developed iron–copper redox flow battery
journal, January 2018

  • Kabtamu, Daniel Manaye; Lin, Guan-Yi; Chang, Yu-Chung
  • RSC Advances, Vol. 8, Issue 16
  • DOI: 10.1039/c7ra12926b

Ion conducting membranes for aqueous flow battery systems
journal, January 2018

  • Yuan, Zhizhang; Zhang, Huamin; Li, Xianfeng
  • Chemical Communications, Vol. 54, Issue 55
  • DOI: 10.1039/c8cc03058h

Rechargeable redox flow batteries: flow fields, stacks and design considerations
journal, January 2018

  • Ke, Xinyou; Prahl, Joseph M.; Alexander, J. Iwan D.
  • Chemical Society Reviews, Vol. 47, Issue 23
  • DOI: 10.1039/c8cs00072g

Designing Cr complexes for a neutral Fe–Cr redox flow battery
journal, January 2020

  • Ruan, Wenqing; Mao, Jiatao; Yang, Shida
  • Chemical Communications, Vol. 56, Issue 21
  • DOI: 10.1039/c9cc09704j

2.6 V aqueous symmetric supercapacitors based on phosphorus-doped TiO 2 nanotube arrays
journal, January 2020

  • Zhang, Yaxiong; Duan, Shifang; Li, Yan
  • Dalton Transactions, Vol. 49, Issue 6
  • DOI: 10.1039/c9dt04316k

A 1.51 V pH neutral redox flow battery towards scalable energy storage
journal, January 2019

  • Luo, Jian; Wu, Wenda; Debruler, Camden
  • Journal of Materials Chemistry A, Vol. 7, Issue 15
  • DOI: 10.1039/c9ta01469a

Water-soluble pH-switchable cobalt complexes for aqueous symmetric redox flow batteries
journal, January 2020

  • Wang, Hao; Sayed, Sayed Youssef; Zhou, Yuqiao
  • Chemical Communications, Vol. 56, Issue 25
  • DOI: 10.1039/d0cc00383b

All-Iron Hybrid Flow Batteries with In-Tank Rebalancing
journal, January 2019

  • Selverston, S.; Nagelli, E.; Wainright, J. S.
  • Journal of The Electrochemical Society, Vol. 166, Issue 10
  • DOI: 10.1149/2.0281910jes

Monitoring the State-of-Charge in All-Iron Aqueous Redox Flow Batteries
journal, January 2018

  • Aguiló-Aguayo, Noemí; Bechtold, Thomas
  • Journal of The Electrochemical Society, Vol. 165, Issue 13
  • DOI: 10.1149/2.0911813jes

Effect of Bromine Complexing Agents on Membrane Performance in Hydrogen Bromine Flow Batteries
journal, January 2019

  • Hugo, Yohanes Antonius; Mazur, Natalia; Kout, Wiebrand
  • Journal of The Electrochemical Society, Vol. 166, Issue 13
  • DOI: 10.1149/2.0951913jes