skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Transit times and mean ages for nonautonomous and autonomous compartmental systems

Abstract

In this study, we develop a theory for transit times and mean ages for nonautonomous compartmental systems. Using the McKendrick–von Förster equation, we show that the mean ages of mass in a compartmental system satisfy a linear nonautonomous ordinary differential equation that is exponentially stable. We then define a nonautonomous version of transit time as the mean age of mass leaving the compartmental system at a particular time and show that our nonautonomous theory generalises the autonomous case. We apply these results to study a nine-dimensional nonautonomous compartmental system modeling the terrestrial carbon cycle, which is a modification of the Carnegie–Ames–Stanford approach model, and we demonstrate that the nonautonomous versions of transit time and mean age differ significantly from the autonomous quantities when calculated for that model.

Authors:
 [1];  [2];  [3];  [4];  [5];  [6];  [7];  [8];  [7];  [9];  [7]
  1. Imperial College London, London (United Kingdom)
  2. Univ. of California, Davis, CA (United States)
  3. Microsoft Research, Cambridge (United Kingdom)
  4. Univ. of Kansas, Lawrence, KS (United States)
  5. Univ. of Texas, Arlington, TX (United States)
  6. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  7. Univ. of Oklahoma, Norman, OK (United States)
  8. Univ. of Oklahoma, Norman, OK (United States); Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
  9. CSIRO Oceans and Atmosphere, Aspendale, VIC (Australia)
Publication Date:
Research Org.:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1251563
Alternate Identifier(s):
OSTI ID: 1327769
Grant/Contract Number:  
EP/I004165/1; W911NF-13-1-0305; AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Mathematical Biology
Additional Journal Information:
Journal Volume: 73; Journal Issue: 6-7; Journal ID: ISSN 0303-6812
Publisher:
Springer
Country of Publication:
United States
Language:
English
Subject:
97 MATHEMATICS AND COMPUTING; carbon cycle; CASA model; compartmental system; exponential stability; linear system; McKendrick-von Forster equation; mean age; nonautonomous; dynamical system; transit time; McKendrick–von Förster equation; nonautonomous dynamical system

Citation Formats

Rasmussen, Martin, Hastings, Alan, Smith, Matthew J., Agusto, Folashade B., Chen-Charpentier, Benito M., Hoffman, Forrest M., Jiang, Jiang, Todd-Brown, Katherine E. O., Wang, Ying, Wang, Ying -Ping, and Luo, Yiqi. Transit times and mean ages for nonautonomous and autonomous compartmental systems. United States: N. p., 2016. Web. doi:10.1007/s00285-016-0990-8.
Rasmussen, Martin, Hastings, Alan, Smith, Matthew J., Agusto, Folashade B., Chen-Charpentier, Benito M., Hoffman, Forrest M., Jiang, Jiang, Todd-Brown, Katherine E. O., Wang, Ying, Wang, Ying -Ping, & Luo, Yiqi. Transit times and mean ages for nonautonomous and autonomous compartmental systems. United States. doi:10.1007/s00285-016-0990-8.
Rasmussen, Martin, Hastings, Alan, Smith, Matthew J., Agusto, Folashade B., Chen-Charpentier, Benito M., Hoffman, Forrest M., Jiang, Jiang, Todd-Brown, Katherine E. O., Wang, Ying, Wang, Ying -Ping, and Luo, Yiqi. Fri . "Transit times and mean ages for nonautonomous and autonomous compartmental systems". United States. doi:10.1007/s00285-016-0990-8. https://www.osti.gov/servlets/purl/1251563.
@article{osti_1251563,
title = {Transit times and mean ages for nonautonomous and autonomous compartmental systems},
author = {Rasmussen, Martin and Hastings, Alan and Smith, Matthew J. and Agusto, Folashade B. and Chen-Charpentier, Benito M. and Hoffman, Forrest M. and Jiang, Jiang and Todd-Brown, Katherine E. O. and Wang, Ying and Wang, Ying -Ping and Luo, Yiqi},
abstractNote = {In this study, we develop a theory for transit times and mean ages for nonautonomous compartmental systems. Using the McKendrick–von Förster equation, we show that the mean ages of mass in a compartmental system satisfy a linear nonautonomous ordinary differential equation that is exponentially stable. We then define a nonautonomous version of transit time as the mean age of mass leaving the compartmental system at a particular time and show that our nonautonomous theory generalises the autonomous case. We apply these results to study a nine-dimensional nonautonomous compartmental system modeling the terrestrial carbon cycle, which is a modification of the Carnegie–Ames–Stanford approach model, and we demonstrate that the nonautonomous versions of transit time and mean age differ significantly from the autonomous quantities when calculated for that model.},
doi = {10.1007/s00285-016-0990-8},
journal = {Journal of Mathematical Biology},
number = 6-7,
volume = 73,
place = {United States},
year = {2016},
month = {4}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 4 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Earth’s carbon cycle: A mathematical perspective
journal, September 2014


Linear Analysis of soil Decomposition: Insights from the Century Model
journal, May 1998


A semi-analytical solution to accelerate spin-up of a coupled carbon and nitrogen land model to steady state
journal, January 2012

  • Xia, J. Y.; Luo, Y. Q.; Wang, Y. -P.
  • Geoscientific Model Development, Vol. 5, Issue 5
  • DOI: 10.5194/gmd-5-1259-2012

Terrestrial ecosystem production: A process model based on global satellite and surface data
journal, December 1993

  • Potter, Christopher S.; Randerson, James T.; Field, Christopher B.
  • Global Biogeochemical Cycles, Vol. 7, Issue 4
  • DOI: 10.1029/93GB02725

Positive feedback between global warming and atmospheric CO 2 concentration inferred from past climate change : GLOBAL WARMING FEEDBACK
journal, May 2006

  • Scheffer, Marten; Brovkin, Victor; Cox, Peter M.
  • Geophysical Research Letters, Vol. 33, Issue 10
  • DOI: 10.1029/2005GL025044

Substrate limitations for heterotrophs: Implications for models that estimate the seasonal cycle of atmospheric CO 2
journal, December 1996

  • Randerson, James T.; Thompson, Matthew V.; Malmstrom, Carolyn M.
  • Global Biogeochemical Cycles, Vol. 10, Issue 4
  • DOI: 10.1029/96GB01981

On the Temperature Dependence of Soil Respiration
journal, June 1994

  • Lloyd, J.; Taylor, J. A.
  • Functional Ecology, Vol. 8, Issue 3
  • DOI: 10.2307/2389824

Potential CO2-Enhanced Carbon Storage by the Terrestrial Biosphere
journal, January 1992

  • Polglase, Pj; Wang, Yp
  • Australian Journal of Botany, Vol. 40, Issue 5
  • DOI: 10.1071/BT9920641

A note on the concepts of age distribution and transit time in natural reservoirs
journal, February 1973


Compartment Models and Reservoir Theory
journal, November 1971


Mean Residence Times in Linear Compartmental Systems. Symbolic Formulae for their Direct Evaluation
journal, March 2003


Predictability of the terrestrial carbon cycle
journal, December 2014

  • Luo, Yiqi; Keenan, Trevor F.; Smith, Matthew
  • Global Change Biology, Vol. 21, Issue 5
  • DOI: 10.1111/gcb.12766

Analysis of soil carbon transit times and age distributions using network theories
journal, January 2009

  • Manzoni, Stefano; Katul, Gabriel G.; Porporato, Amilcare
  • Journal of Geophysical Research, Vol. 114, Issue G4
  • DOI: 10.1029/2009JG001070

The relationship between peak warming and cumulative CO2 emissions, and its use to quantify vulnerabilities in the carbon-climate-human system
journal, January 2011

  • Raupach, Michael R.; Canadell, Josep G.; Ciais, Philippe
  • Tellus B: Chemical and Physical Meteorology, Vol. 63, Issue 2, p. 145-164
  • DOI: 10.1111/j.1600-0889.2010.00521.x

Qualitative Theory of Compartmental Systems
journal, March 1993

  • Jacquez, John A.; Simon, Carl P.
  • SIAM Review, Vol. 35, Issue 1
  • DOI: 10.1137/1035003

Criteria for exponential dichotomy for triangular systems
journal, August 2015

  • Battelli, Flaviano; Palmer, Kenneth J.
  • Journal of Mathematical Analysis and Applications, Vol. 428, Issue 1
  • DOI: 10.1016/j.jmaa.2015.03.029

The changing carbon cycle at Mauna Loa Observatory
journal, March 2007

  • Buermann, W.; Lintner, B. R.; Koven, C. D.
  • Proceedings of the National Academy of Sciences, Vol. 104, Issue 11
  • DOI: 10.1073/pnas.0611224104

Dichotomy spectra of triangular equations
journal, June 2015


    Works referencing / citing this record:

    Modelling transport and mean age of dense core vesicles in large axonal arbours
    journal, August 2019

    • Kuznetsov, I. A.; Kuznetsov, A. V.
    • Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 475, Issue 2228
    • DOI: 10.1098/rspa.2019.0284

    Modelling transport and mean age of dense core vesicles in large axonal arbours
    journal, August 2019

    • Kuznetsov, I. A.; Kuznetsov, A. V.
    • Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 475, Issue 2228
    • DOI: 10.1098/rspa.2019.0284