DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Phase-field modeling of diffusional phase behaviors of solid surfaces: A case study of phase-separating LiXFePO4 electrode particles

Abstract

In this paper, we present a comprehensive phase-field model for simulating diffusion-mediated kinetic phase behaviors near the surface of a solid particle. The model incorporates elastic inhomogeneity and anisotropy, diffusion mobility anisotropy, interfacial energy anisotropy, and Cahn–Hilliard diffusion kinetics. The free energy density function is formulated based on the regular solution model taking into account the possible solute-surface interaction near the surface. The coherency strain energy is computed using the Fourier-spectral iterative-perturbation method due to the strong elastic inhomogeneity with a zero surface traction boundary condition. Employing a phase-separating LiXFePO4 electrode particle for Li-ion batteries as a model system, we perform parametric three-dimensional computer simulations. The model permits the observation of surface phase behaviors that are different from the bulk counterpart. For instance, it reproduces the theoretically well-established surface modes of spinodal decomposition of an unstable solid solution: the surface mode of coherent spinodal decomposition and the surface-directed spinodal decomposition mode. We systematically investigate the influences of major factors on the kinetic surface phase behaviors during the diffusional process. Finally, our simulation study provides insights for tailoring the internal phase microstructure of a particle by controlling the surface phase morphology.

Authors:
 [1];  [2];  [1]
  1. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Materials Science Division
  2. Pennsylvania State Univ., University Park, PA (United States). Dept. of Materials Science and Engineering
Publication Date:
Research Org.:
Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Pennsylvania State Univ., University Park, PA (United States)
Sponsoring Org.:
USDOE; LLNL Laboratory Directed Research and Development (LDRD) Program; National Science Foundation (NSF)
OSTI Identifier:
1251071
Alternate Identifier(s):
OSTI ID: 1250075
Report Number(s):
LLNL-JRNL-665469
Journal ID: ISSN 0927-0256
Grant/Contract Number:  
AC52-07NA27344; CMMI-1235092
Resource Type:
Accepted Manuscript
Journal Name:
Computational Materials Science
Additional Journal Information:
Journal Volume: 108; Journal Issue: B; Journal ID: ISSN 0927-0256
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 25 ENERGY STORAGE; phase-field model; solid surface; phase behavior; electrode particle

Citation Formats

Heo, Tae Wook, Chen, Long-Qing, and Wood, Brandon C. Phase-field modeling of diffusional phase behaviors of solid surfaces: A case study of phase-separating LiXFePO4 electrode particles. United States: N. p., 2015. Web. doi:10.1016/j.commatsci.2015.03.020.
Heo, Tae Wook, Chen, Long-Qing, & Wood, Brandon C. Phase-field modeling of diffusional phase behaviors of solid surfaces: A case study of phase-separating LiXFePO4 electrode particles. United States. https://doi.org/10.1016/j.commatsci.2015.03.020
Heo, Tae Wook, Chen, Long-Qing, and Wood, Brandon C. Wed . "Phase-field modeling of diffusional phase behaviors of solid surfaces: A case study of phase-separating LiXFePO4 electrode particles". United States. https://doi.org/10.1016/j.commatsci.2015.03.020. https://www.osti.gov/servlets/purl/1251071.
@article{osti_1251071,
title = {Phase-field modeling of diffusional phase behaviors of solid surfaces: A case study of phase-separating LiXFePO4 electrode particles},
author = {Heo, Tae Wook and Chen, Long-Qing and Wood, Brandon C.},
abstractNote = {In this paper, we present a comprehensive phase-field model for simulating diffusion-mediated kinetic phase behaviors near the surface of a solid particle. The model incorporates elastic inhomogeneity and anisotropy, diffusion mobility anisotropy, interfacial energy anisotropy, and Cahn–Hilliard diffusion kinetics. The free energy density function is formulated based on the regular solution model taking into account the possible solute-surface interaction near the surface. The coherency strain energy is computed using the Fourier-spectral iterative-perturbation method due to the strong elastic inhomogeneity with a zero surface traction boundary condition. Employing a phase-separating LiXFePO4 electrode particle for Li-ion batteries as a model system, we perform parametric three-dimensional computer simulations. The model permits the observation of surface phase behaviors that are different from the bulk counterpart. For instance, it reproduces the theoretically well-established surface modes of spinodal decomposition of an unstable solid solution: the surface mode of coherent spinodal decomposition and the surface-directed spinodal decomposition mode. We systematically investigate the influences of major factors on the kinetic surface phase behaviors during the diffusional process. Finally, our simulation study provides insights for tailoring the internal phase microstructure of a particle by controlling the surface phase morphology.},
doi = {10.1016/j.commatsci.2015.03.020},
journal = {Computational Materials Science},
number = B,
volume = 108,
place = {United States},
year = {Wed Apr 08 00:00:00 EDT 2015},
month = {Wed Apr 08 00:00:00 EDT 2015}
}

Journal Article:

Citation Metrics:
Cited by: 11 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries
journal, April 1997

  • Padhi, A. K.
  • Journal of The Electrochemical Society, Vol. 144, Issue 4, p. 1188-1194
  • DOI: 10.1149/1.1837571

The existence of a temperature-driven solid solution in LixFePO4 for 0 ≤ x ≤ 1
journal, February 2005

  • Delacourt, Charles; Poizot, Philippe; Tarascon, Jean-Marie
  • Nature Materials, Vol. 4, Issue 3
  • DOI: 10.1038/nmat1335

Room-temperature miscibility gap in LixFePO4
journal, April 2006

  • Yamada, Atsuo; Koizumi, Hiroshi; Nishimura, Shin-ichi
  • Nature Materials, Vol. 5, Issue 5
  • DOI: 10.1038/nmat1634

Size-Dependent Lithium Miscibility Gap in Nanoscale Li[sub 1−x]FePO[sub 4]
journal, January 2007

  • Meethong, Nonglak; Huang, Hsiao-Ying Shadow; Carter, W. Craig
  • Electrochemical and Solid-State Letters, Vol. 10, Issue 5
  • DOI: 10.1149/1.2710960

Strain Accommodation during Phase Transformations in Olivine-Based Cathodes as a Materials Selection Criterion for High-Power Rechargeable Batteries
journal, March 2007

  • Meethong, N.; Huang, H. -Y. S.; Speakman, S. A.
  • Advanced Functional Materials, Vol. 17, Issue 7
  • DOI: 10.1002/adfm.200600938

Room-temperature single-phase Li insertion/extraction in nanoscale LixFePO4
journal, July 2008

  • Gibot, Pierre; Casas-Cabanas, Montse; Laffont, Lydia
  • Nature Materials, Vol. 7, Issue 9
  • DOI: 10.1038/nmat2245

The Role of Coherency Strains on Phase Stability in Li[sub x]FePO[sub 4]: Needle Crystallites Minimize Coherency Strain and Overpotential
journal, January 2009

  • Van der Ven, A.; Garikipati, K.; Kim, S.
  • Journal of The Electrochemical Society, Vol. 156, Issue 11
  • DOI: 10.1149/1.3222746

The Role of Surface and Interface Energy on Phase Stability of Nanosized Insertion Compounds
journal, April 2009

  • Wagemaker, Marnix; Mulder, Fokko M.; Van der Ven, Anton
  • Advanced Materials, Vol. 21, Issue 25-26
  • DOI: 10.1002/adma.200803038

Kinetics of non-equilibrium lithium incorporation in LiFePO4
journal, July 2011

  • Malik, Rahul; Zhou, Fei; Ceder, G.
  • Nature Materials, Vol. 10, Issue 8
  • DOI: 10.1038/nmat3065

What determines the critical size for phase separation in LiFePO4 in lithium ion batteries?
journal, January 2013

  • Ichitsubo, Tetsu; Doi, Takayuki; Tokuda, Kazuya
  • Journal of Materials Chemistry A, Vol. 1, Issue 46
  • DOI: 10.1039/c3ta13122j

Phase-Field Models for Microstructure Evolution
journal, August 2002


Phase-Field Simulation of Solidification
journal, August 2002


Advances of and by phase-field modelling in condensed-matter physics
journal, January 2008


An introduction to phase-field modeling of microstructure evolution
journal, June 2008


Phase-field models in materials science
journal, July 2009


Electrochemical modeling of intercalation processes with phase field models
journal, October 2004


Intercalation dynamics in rechargeable battery materials: General theory and phase-transformation waves in LiFePO4
journal, November 2008


Size-Dependent Spinodal and Miscibility Gaps for Intercalation in Nanoparticles
journal, November 2009

  • Burch, Damian; Bazant, Martin Z.
  • Nano Letters, Vol. 9, Issue 11
  • DOI: 10.1021/nl9019787

Suppression of Phase Separation in LiFePO 4 Nanoparticles During Battery Discharge
journal, November 2011

  • Bai, Peng; Cogswell, Daniel A.; Bazant, Martin Z.
  • Nano Letters, Vol. 11, Issue 11
  • DOI: 10.1021/nl202764f

Coherency Strain and the Kinetics of Phase Separation in LiFePO 4 Nanoparticles
journal, February 2012

  • Cogswell, Daniel A.; Bazant, Martin Z.
  • ACS Nano, Vol. 6, Issue 3
  • DOI: 10.1021/nn204177u

Theory of Coherent Nucleation in Phase-Separating Nanoparticles
journal, May 2013

  • Cogswell, Daniel A.; Bazant, Martin Z.
  • Nano Letters, Vol. 13, Issue 7
  • DOI: 10.1021/nl400497t

Theory of Chemical Kinetics and Charge Transfer based on Nonequilibrium Thermodynamics
journal, June 2012

  • Bazant, Martin Z.
  • Accounts of Chemical Research, Vol. 46, Issue 5
  • DOI: 10.1021/ar300145c

Modeling the competing phase transition pathways in nanoscale olivine electrodes
journal, December 2010


Anisotropic Phase Boundary Morphology in Nanoscale Olivine Electrode Particles
journal, February 2011

  • Tang, Ming; Belak, James F.; Dorr, Milo R.
  • The Journal of Physical Chemistry C, Vol. 115, Issue 11
  • DOI: 10.1021/jp109628m

Elastically constrained phase-separation dynamics competing with the charge process in the LiFePO4/FePO4 system
journal, January 2013

  • Ichitsubo, Tetsu; Tokuda, Kazuya; Yagi, Shunsuke
  • Journal of Materials Chemistry A, Vol. 1, Issue 7
  • DOI: 10.1039/c2ta01102f

Free Energy of a Nonuniform System. I. Interfacial Free Energy
journal, February 1958

  • Cahn, John W.; Hilliard, John E.
  • The Journal of Chemical Physics, Vol. 28, Issue 2
  • DOI: 10.1063/1.1744102

The impurity-drag effect in grain boundary motion
journal, September 1962


Grain-boundary segregation and dynamic solute drag theory—A phase-field approach
journal, February 2007


A phase field study of strain energy effects on solute–grain boundary interactions
journal, December 2011


Anisotropy of segregation at grain boundaries and surfaces
journal, September 2006

  • Wynblatt, Paul; Chatain, Dominique
  • Metallurgical and Materials Transactions A, Vol. 37, Issue 9
  • DOI: 10.1007/BF02586096

Extended smoothed boundary method for solving partial differential equations with general boundary conditions on complex boundaries
journal, September 2012

  • Yu, Hui-Chia; Chen, Hsun-Yi; Thornton, K.
  • Modelling and Simulation in Materials Science and Engineering, Vol. 20, Issue 7
  • DOI: 10.1088/0965-0393/20/7/075008

A phase-field model of stress effect on grain boundary migration
journal, March 2011

  • Bhattacharyya, Saswata; Heo, Tae Wook; Chang, Kunok
  • Modelling and Simulation in Materials Science and Engineering, Vol. 19, Issue 3
  • DOI: 10.1088/0965-0393/19/3/035002

A Spectral Iterative Method for the Computation of Effective Properties Of Elastically Inhomogeneous Polycrystals
journal, March 2012

  • Bhattacharyya, Saswata; Heo, Tae Wook; Chang, Kunok
  • Communications in Computational Physics, Vol. 11, Issue 3
  • DOI: 10.4208/cicp.290610.060411a

A phase-field model for elastically anisotropic polycrystalline binary solid solutions
journal, May 2013


A phase-field model for evolving microstructures with strong elastic inhomogeneity
journal, June 2001


An iterative-perturbation scheme for treating inhomogeneous elasticity in phase-field models
journal, September 2005


On spinodal decomposition
journal, September 1961


Coarsening kinetics from a variable-mobility Cahn-Hilliard equation: Application of a semi-implicit Fourier spectral method
journal, October 1999


Applications of semi-implicit Fourier-spectral method to phase field equations
journal, February 1998


Electron Microscopy Study of the LiFePO[sub 4] to FePO[sub 4] Phase Transition
journal, January 2006

  • Chen, Guoying; Song, Xiangyun; Richardson, Thomas J.
  • Electrochemical and Solid-State Letters, Vol. 9, Issue 6
  • DOI: 10.1149/1.2192695

Surface Modes of Coherent Spinodal Decomposition
journal, June 2012


Surface-directed spinodal decomposition
journal, March 1991

  • Jones, Richard A. L.; Norton, Laura J.; Kramer, Edward J.
  • Physical Review Letters, Vol. 66, Issue 10
  • DOI: 10.1103/PhysRevLett.66.1326

Surface effects on spinodal decomposition in binary mixtures and the interplay with wetting phenomena
journal, June 1994


Surface effects on spinodal decomposition in the framework of a linearized theory
journal, September 1995


Surface effects on spinodal decomposition in binary mixtures: The case with long-ranged surface fields
journal, December 1997


Surface-directed spinodal decomposition versus wetting phenomena: Computer simulations
journal, January 1999

  • Binder, Kurt; Puri, Sanjay; Frisch, Harry L.
  • Faraday Discussions, Vol. 112
  • DOI: 10.1039/a808787c

Surface-directed spinodal decomposition in a stressed, two-dimensional, thin film
journal, February 2005


Li Conductivity in Li[sub x]MPO[sub 4] (M = Mn, Fe, Co, Ni) Olivine Materials
journal, January 2004

  • Morgan, D.; Van der Ven, A.; Ceder, G.
  • Electrochemical and Solid-State Letters, Vol. 7, Issue 2
  • DOI: 10.1149/1.1633511

Atomic-Scale Investigation of Defects, Dopants, and Lithium Transport in the LiFePO 4 Olivine-Type Battery Material
journal, October 2005

  • Islam, M. Saiful; Driscoll, Daniel J.; Fisher, Craig A. J.
  • Chemistry of Materials, Vol. 17, Issue 20
  • DOI: 10.1021/cm050999v

Phase Separation by Spinodal Decomposition in Isotropic Systems
journal, January 1965

  • Cahn, John W.
  • The Journal of Chemical Physics, Vol. 42, Issue 1
  • DOI: 10.1063/1.1695731

Particle-size and morphology dependence of the preferred interface orientation in LiFePO 4 nano-particles
journal, January 2014

  • Abdellahi, Aziz; Akyildiz, Oncu; Malik, Rahul
  • J. Mater. Chem. A, Vol. 2, Issue 37
  • DOI: 10.1039/C4TA02935F

Works referencing / citing this record:

A mechanism of defect-enhanced phase transformation kinetics in lithium iron phosphate olivine
journal, December 2019