skip to main content


Title: Development of a 15 T Nb 3Sn accelerator dipole demonstrator at Fermilab

Here, a 100 TeV scale Hadron Collider (HC) with a nominal operation field of at least 15 T is being considered for the post-LHC era, which requires using the Nb 3Sn technology. Practical demonstration of this field level in an accelerator-quality magnet and substantial reduction of the magnet costs are the key conditions for realization of such a machine. FNAL has started the development of a 15 T Nb 3Sn dipole demonstrator for a 100 TeV scale HC. The magnet design is based on 4-layer shell type coils, graded between the inner and outer layers to maximize the performance and reduce the cost. The experience gained during the Nb 3Sn magnet R&D is applied to different aspects of the magnet design. This paper describes the magnetic and structural designs and parameters of the 15 T Nb 3Sn dipole and the steps towards the demonstration model fabrication.
 [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1]
  1. Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)
Publication Date:
Report Number(s):
Journal ID: ISSN 1051-8223; 1414888; TRN: US1601642
Grant/Contract Number:
Accepted Manuscript
Journal Name:
IEEE Transactions on Applied Superconductivity
Additional Journal Information:
Journal Volume: 26; Journal Issue: 4; Conference: 24th International Conference on Magnet Technology, Seoul (Korea), 18-23 Oct 2015; Journal ID: ISSN 1051-8223
Institute of Electrical and Electronics Engineers (IEEE)
Research Org:
Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)
Sponsoring Org:
USDOE Office of Science (SC), High Energy Physics (HEP) (SC-25)
Country of Publication:
United States
43 PARTICLE ACCELERATORS; 75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; dipole magnet; collider; magnetic field; mechanical structure; Nb3Sn superconductor; Rutherford cable
OSTI Identifier: