DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Coupling extended magnetohydrodynamic fluid codes with radiofrequency ray tracing codes for fusion modeling

Abstract

Neoclassical tearing modes are macroscopic ($$L$$ ~ 1 m) instabilities in magnetic fusion experiments; if unchecked, these modes degrade plasma performance and may catastrophically destroy plasma confinement by inducing a disruption. Fortunately, the use of properly tuned and directed radiofrequency waves ($$λ$$ ~ 1 mm) can eliminate these modes. Numerical modeling of this difficult multiscale problem requires the integration of separate mathematical models for each length and time scale [T. G. Jenkins, S. E. Kruger, Phys. Plasmas 19 (2012) 122508]; the extended MHD model captures macroscopic plasma evolution while the RF model tracks the flow and deposition of injected RF power through the evolving plasma profiles. The scale separation enables use of the eikonal (ray-tracing) approximation to model the RF wave propagation. In this work we demonstrate a technique, based on methods of computational geometry, for mapping the ensuing RF data (associated with discrete ray trajectories) onto the finite-element/pseudospectral grid that is used to model the extended MHD physics. In the new representation, the RF data can then be used to construct source terms in the equations of the extended MHD model, enabling quantitative modeling of RF-induced tearing mode stabilization. Though our specific implementation uses the NIMROD extended MHD [C. R. Sovinec et al., J. Comp. Phys. 195 (2004) 355] and GENRAY RF [A. P. Smirnov, R. W. Harvey, K. Kupfer, Bull. Amer. Phys. Soc. 39 (1994) 1626] codes, the approach presented can be applied more generally to any code coupling requiring the mapping of ray tracing data onto Eulerian grids.

Authors:
ORCiD logo [1];  [2]
  1. Tech-X Corporation, Boulder, CO (United States)
  2. Utah State Univ., Logan, UT (United States)
Publication Date:
Research Org.:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF); Univ. of California, Oakland, CA (United States); UT-Battelle LLC/ORNL, Oak Ridge, TN (United States); Univ. of Wisconsin, Madison, WI (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1565301
Alternate Identifier(s):
OSTI ID: 1249981
Grant/Contract Number:  
AC02-05CH11231; AC05-00OR22725; FC02-06ER54899
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Computational Physics
Additional Journal Information:
Journal Volume: 297; Journal Issue: C; Journal ID: ISSN 0021-9991
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; computer science; physics; computational geometry; ray tracing; finite element methods; pseudospectral methods; magnetohydrodynamics; radiofrequency waves

Citation Formats

Jenkins, Thomas G., and Held, Eric D. Coupling extended magnetohydrodynamic fluid codes with radiofrequency ray tracing codes for fusion modeling. United States: N. p., 2015. Web. doi:10.1016/j.jcp.2015.05.035.
Jenkins, Thomas G., & Held, Eric D. Coupling extended magnetohydrodynamic fluid codes with radiofrequency ray tracing codes for fusion modeling. United States. https://doi.org/10.1016/j.jcp.2015.05.035
Jenkins, Thomas G., and Held, Eric D. Tue . "Coupling extended magnetohydrodynamic fluid codes with radiofrequency ray tracing codes for fusion modeling". United States. https://doi.org/10.1016/j.jcp.2015.05.035. https://www.osti.gov/servlets/purl/1565301.
@article{osti_1565301,
title = {Coupling extended magnetohydrodynamic fluid codes with radiofrequency ray tracing codes for fusion modeling},
author = {Jenkins, Thomas G. and Held, Eric D.},
abstractNote = {Neoclassical tearing modes are macroscopic ($L$ ~ 1 m) instabilities in magnetic fusion experiments; if unchecked, these modes degrade plasma performance and may catastrophically destroy plasma confinement by inducing a disruption. Fortunately, the use of properly tuned and directed radiofrequency waves ($λ$ ~ 1 mm) can eliminate these modes. Numerical modeling of this difficult multiscale problem requires the integration of separate mathematical models for each length and time scale [T. G. Jenkins, S. E. Kruger, Phys. Plasmas 19 (2012) 122508]; the extended MHD model captures macroscopic plasma evolution while the RF model tracks the flow and deposition of injected RF power through the evolving plasma profiles. The scale separation enables use of the eikonal (ray-tracing) approximation to model the RF wave propagation. In this work we demonstrate a technique, based on methods of computational geometry, for mapping the ensuing RF data (associated with discrete ray trajectories) onto the finite-element/pseudospectral grid that is used to model the extended MHD physics. In the new representation, the RF data can then be used to construct source terms in the equations of the extended MHD model, enabling quantitative modeling of RF-induced tearing mode stabilization. Though our specific implementation uses the NIMROD extended MHD [C. R. Sovinec et al., J. Comp. Phys. 195 (2004) 355] and GENRAY RF [A. P. Smirnov, R. W. Harvey, K. Kupfer, Bull. Amer. Phys. Soc. 39 (1994) 1626] codes, the approach presented can be applied more generally to any code coupling requiring the mapping of ray tracing data onto Eulerian grids.},
doi = {10.1016/j.jcp.2015.05.035},
journal = {Journal of Computational Physics},
number = C,
volume = 297,
place = {United States},
year = {Tue Sep 15 00:00:00 EDT 2015},
month = {Tue Sep 15 00:00:00 EDT 2015}
}

Journal Article:

Citation Metrics:
Cited by: 4 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Neoclassical tearing modes and their control
journal, May 2006


Observation of Nonlinear Neoclassical Pressure-Gradient–Driven Tearing Modes in TFTR
journal, June 1995


Transport effects of low (m,n) MHD modes on TFTR supershots
journal, October 1994


Influence of neoclassical tearing modes on energy confinement
journal, January 1999


MHD instabilities near the β limit in the doublet III-D tokamak
journal, March 1989


Beta limits in long-pulse tokamak discharges
journal, May 1997

  • Sauter, O.; La Haye, R. J.; Chang, Z.
  • Physics of Plasmas, Vol. 4, Issue 5
  • DOI: 10.1063/1.872270

High beta tokamak operation in DIII-D limited at low density/collisionality by resistive tearing modes
journal, March 1997


Chapter 1: Overview and summary
journal, December 1999

  • Editors, ITER Physics Basis; Co-Chairs, ITER Physics Expert Group Chairs an; Unit, ITER Joint Central Team and Physics
  • Nuclear Fusion, Vol. 39, Issue 12
  • DOI: 10.1088/0029-5515/39/12/301

Experiments on neoclassical tearing mode stabilization by ECCD in ASDEX Upgrade
journal, May 1999


Control of neoclassical tearing modes in DIII–D
journal, May 2002

  • La Haye, R. J.; Günter, S.; Humphreys, D. A.
  • Physics of Plasmas, Vol. 9, Issue 5
  • DOI: 10.1063/1.1456066

Active control for stabilization of neoclassical tearing modes
journal, May 2006

  • Humphreys, D. A.; Ferron, J. R.; La Haye, R. J.
  • Physics of Plasmas, Vol. 13, Issue 5
  • DOI: 10.1063/1.2173606

Stabilization and prevention of the 2/1 neoclassical tearing mode for improved performance in DIII-D
journal, April 2007


A closure scheme for modeling rf modifications to the fluid equations
journal, November 2009

  • Hegna, C. C.; Callen, J. D.
  • Physics of Plasmas, Vol. 16, Issue 11
  • DOI: 10.1063/1.3258850

Fluid equations in the presence of electron cyclotron current drive
journal, December 2012

  • Jenkins, Thomas G.; Kruger, Scott E.
  • Physics of Plasmas, Vol. 19, Issue 12
  • DOI: 10.1063/1.4773211

Nonlinear magnetohydrodynamics simulation using high-order finite elements
journal, March 2004

  • Sovinec, C. R.; Glasser, A. H.; Gianakon, T. A.
  • Journal of Computational Physics, Vol. 195, Issue 1
  • DOI: 10.1016/j.jcp.2003.10.004

Dynamics of the major disruption of a DIII-D plasma
journal, May 2005

  • Kruger, S. E.; Schnack, D. D.; Sovinec, C. R.
  • Physics of Plasmas, Vol. 12, Issue 5
  • DOI: 10.1063/1.1873872

Kinetic Effects of Energetic Particles on Resistive MHD Stability
journal, March 2009


Edge localized linear ideal magnetohydrodynamic instability studies in an extended-magnetohydrodynamic code
journal, March 2010

  • Burke, B. J.; Kruger, S. E.; Hegna, C. C.
  • Physics of Plasmas, Vol. 17, Issue 3
  • DOI: 10.1063/1.3309732

Runaway electron confinement modelling for rapid shutdown scenarios in DIII-D, Alcator C-Mod and ITER
journal, May 2011


First-order finite-Larmor-radius effects on magnetic tearing in pinch configurations
journal, April 2011

  • King, J. R.; Sovinec, C. R.; Mirnov, V. V.
  • Physics of Plasmas, Vol. 18, Issue 4
  • DOI: 10.1063/1.3571599

Nonlocal closures for plasma fluid simulations
journal, May 2004

  • Held, E. D.; Callen, J. D.; Hegna, C. C.
  • Physics of Plasmas, Vol. 11, Issue 5
  • DOI: 10.1063/1.1645520

Lower hybrid current drive experiments on Alcator C-Mod: Comparison with theory and simulation
journal, May 2008

  • Bonoli, P. T.; Ko, J.; Parker, R.
  • Physics of Plasmas, Vol. 15, Issue 5
  • DOI: 10.1063/1.2904569

Investigation of lower hybrid physics through power modulation experiments on Alcator C-Mod
journal, May 2011

  • Schmidt, A.; Bonoli, P. T.; Meneghini, O.
  • Physics of Plasmas, Vol. 18, Issue 5
  • DOI: 10.1063/1.3593112

Off-midplane launch of electron Bernstein waves for current drive in overdense plasmas
journal, May 2000

  • Forest, C. B.; Chattopadhyay, P. K.; Harvey, R. W.
  • Physics of Plasmas, Vol. 7, Issue 5
  • DOI: 10.1063/1.873951

Power deposition by mode converted electron Bernstein waves in the DIII-D `heat pinch' experiments
journal, May 2001


Finite-Larmor-radius kinetic theory of a magnetized plasma in the macroscopic flow reference frame
journal, August 2008


Computational modeling of fully ionized magnetized plasmas using the fluid approximation
journal, May 2006

  • Schnack, D. D.; Barnes, D. C.; Brennan, D. P.
  • Physics of Plasmas, Vol. 13, Issue 5
  • DOI: 10.1063/1.2183738

Analysis of a mixed semi-implicit/implicit algorithm for low-frequency two-fluid plasma modeling
journal, August 2010


Calculating electron cyclotron current drive stabilization of resistive tearing modes in a nonlinear magnetohydrodynamic model
journal, January 2010

  • Jenkins, Thomas G.; Kruger, Scott E.; Hegna, C. C.
  • Physics of Plasmas, Vol. 17, Issue 1
  • DOI: 10.1063/1.3276740

Geometric optics in plasmas characterized by non-Hermitian dielectric tensors
journal, October 1980


The quickhull algorithm for convex hulls
journal, December 1996

  • Barber, C. Bradford; Dobkin, David P.; Huhdanpaa, Hannu
  • ACM Transactions on Mathematical Software, Vol. 22, Issue 4
  • DOI: 10.1145/235815.235821

Development of ITER-relevant plasma control solutions at DIII-D
journal, July 2007


Algorithm 660: QSHEP2D: Quadratic Shepard Method for Bivariate Interpolation of Scattered Data
journal, June 1988

  • Renka, Robert J.
  • ACM Transactions on Mathematical Software, Vol. 14, Issue 2
  • DOI: 10.1145/45054.356231

Algorithm 792: accuracy test of ACM algorithms for interpolation of scattered data in the plane
journal, March 1999

  • Renka, Robert J.; Brown, Ron
  • ACM Transactions on Mathematical Software, Vol. 25, Issue 1
  • DOI: 10.1145/305658.305745

Creating an Asymmetric Plasma Resistivity with Waves
journal, September 1980


Verification of continuum drift kinetic equation solvers in NIMROD
journal, March 2015

  • Held, E. D.; Kruger, S. E.; Ji, J. -Y.
  • Physics of Plasmas, Vol. 22, Issue 3
  • DOI: 10.1063/1.4914165

Exact linearized Coulomb collision operator in the moment expansion
journal, October 2006

  • Ji, Jeong-Young; Held, Eric D.
  • Physics of Plasmas, Vol. 13, Issue 10
  • DOI: 10.1063/1.2356320