DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Ultrafast electron kinetics in short pulse laser-driven dense hydrogen

Abstract

Dense cryogenic hydrogen is heated by intense femtosecond infrared laser pulses at intensities of 1015 – 1016W cm–2. Three-dimensional particle-in-cell (PIC) simulations predict that this heating is limited to the skin depth, causing an inhomogeneously heated outer shell with a cold core and two prominent temperatures of about $25$ and $$40\;\mathrm{eV}$$ for simulated delay times up to $$+70\;\mathrm{fs}$$ after the laser pulse maximum. Experimentally, the time-integrated emitted bremsstrahlung in the spectral range of 8–18 nm was corrected for the wavelength-dependent instrument efficiency. The resulting spectrum cannot be fit with a single temperature bremsstrahlung model, and the best fit is obtained using two temperatures of about 13 and $$30\;$$eV. The lower temperatures in the experiment can be explained by missing energy-loss channels in the simulations, as well as the inclusion of hot, non-Maxwellian electrons in the temperature calculation. Furthermore, we resolved the time-scale for laser-heating of hydrogen, and PIC results for laser–matter interaction were successfully tested against the experiment data.

Authors:
 [1];  [2];  [3];  [4];  [4];  [4];  [5];  [4];  [6];  [7];  [6];  [8];  [9];  [10];  [11];  [6];  [5];  [4];  [8];  [12] more »;  [13];  [14];  [15];  [4];  [4];  [15];  [16];  [6];  [4];  [13] « less
  1. European XFEL, Hamburg (Germany); Friedrich-Schiller-Univ., Jena (Germany)
  2. SLAC National Accelerator Lab., Menlo Park, CA (United States); Univ. Rostock, Rostock (Germany)
  3. Quantum Wise A/S, Copenhagen (Denmark)
  4. Univ. Rostock, Rostock (Germany)
  5. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  6. SLAC National Accelerator Lab., Menlo Park, CA (United States)
  7. Friedrich-Schiller-Univ., Jena (Germany); Helmholtz-Institut Jena, Jena (Germany)
  8. Univ. of Oxford, Oxford (United Kingdom)
  9. Institut de mineralogie, Paris (France); Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
  10. Friedrich-Schiller-Univ., Jena (Germany)
  11. Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); The Hamburg Centre for Ultrafast Imaging CUI, Hamburg (Germany)
  12. Univ. of Edinburgh, Edinburgh (United Kingdom)
  13. European XFEL, Hamburg (Germany)
  14. Extreme Matter Institute, GSI Helmholtzzentrum fur Schwerionenforschung, Darmstadt (Germany)
  15. Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
  16. Imperial College, London (United Kingdom)
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States); Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1249381
Alternate Identifier(s):
OSTI ID: 1260499
Report Number(s):
SLAC-PUB-16138; LLNL-JRNL-686307
Journal ID: ISSN 0953-4075
Grant/Contract Number:  
AC02-76SF00515; AC52-07NA27344
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Physics. B, Atomic, Molecular and Optical Physics
Additional Journal Information:
Journal Volume: 48; Journal Issue: 22; Journal ID: ISSN 0953-4075
Publisher:
IOP Publishing
Country of Publication:
United States
Language:
English
Subject:
42 ENGINEERING; 43 PARTICLE ACCELERATORS; PHYS; OPTICS; electron collision; emission; absorption; scattering of electromagnetic radiation; plasma production; heating by laser beams; 70 PLASMA PHYSICS AND FUSION

Citation Formats

Zastrau, U., Sperling, P., Fortmann-Grote, C., Becker, A., Bornath, T., Bredow, R., Doppner, T., Fennel, T., Fletcher, L. B., Forster, E., Gode, S., Gregori, G., Harmand, M., Hilbert, V., Laarmann, T., Lee, H. J., Ma, T., Meiwes-Broer, K. H., Mithen, J. P., Murphy, C. D., Nakatsutsumi, M., Neumayer, P., Przystawik, A., Skruszewicz, S., Tiggesbaumker, J., Toleikis, S., White, T. G., Glenzer, S. H., Redmer, R., and Tschentscher, T. Ultrafast electron kinetics in short pulse laser-driven dense hydrogen. United States: N. p., 2015. Web. doi:10.1088/0953-4075/48/22/224004.
Zastrau, U., Sperling, P., Fortmann-Grote, C., Becker, A., Bornath, T., Bredow, R., Doppner, T., Fennel, T., Fletcher, L. B., Forster, E., Gode, S., Gregori, G., Harmand, M., Hilbert, V., Laarmann, T., Lee, H. J., Ma, T., Meiwes-Broer, K. H., Mithen, J. P., Murphy, C. D., Nakatsutsumi, M., Neumayer, P., Przystawik, A., Skruszewicz, S., Tiggesbaumker, J., Toleikis, S., White, T. G., Glenzer, S. H., Redmer, R., & Tschentscher, T. Ultrafast electron kinetics in short pulse laser-driven dense hydrogen. United States. https://doi.org/10.1088/0953-4075/48/22/224004
Zastrau, U., Sperling, P., Fortmann-Grote, C., Becker, A., Bornath, T., Bredow, R., Doppner, T., Fennel, T., Fletcher, L. B., Forster, E., Gode, S., Gregori, G., Harmand, M., Hilbert, V., Laarmann, T., Lee, H. J., Ma, T., Meiwes-Broer, K. H., Mithen, J. P., Murphy, C. D., Nakatsutsumi, M., Neumayer, P., Przystawik, A., Skruszewicz, S., Tiggesbaumker, J., Toleikis, S., White, T. G., Glenzer, S. H., Redmer, R., and Tschentscher, T. Fri . "Ultrafast electron kinetics in short pulse laser-driven dense hydrogen". United States. https://doi.org/10.1088/0953-4075/48/22/224004. https://www.osti.gov/servlets/purl/1249381.
@article{osti_1249381,
title = {Ultrafast electron kinetics in short pulse laser-driven dense hydrogen},
author = {Zastrau, U. and Sperling, P. and Fortmann-Grote, C. and Becker, A. and Bornath, T. and Bredow, R. and Doppner, T. and Fennel, T. and Fletcher, L. B. and Forster, E. and Gode, S. and Gregori, G. and Harmand, M. and Hilbert, V. and Laarmann, T. and Lee, H. J. and Ma, T. and Meiwes-Broer, K. H. and Mithen, J. P. and Murphy, C. D. and Nakatsutsumi, M. and Neumayer, P. and Przystawik, A. and Skruszewicz, S. and Tiggesbaumker, J. and Toleikis, S. and White, T. G. and Glenzer, S. H. and Redmer, R. and Tschentscher, T.},
abstractNote = {Dense cryogenic hydrogen is heated by intense femtosecond infrared laser pulses at intensities of 1015 – 1016W cm–2. Three-dimensional particle-in-cell (PIC) simulations predict that this heating is limited to the skin depth, causing an inhomogeneously heated outer shell with a cold core and two prominent temperatures of about $25$ and $40\;\mathrm{eV}$ for simulated delay times up to $+70\;\mathrm{fs}$ after the laser pulse maximum. Experimentally, the time-integrated emitted bremsstrahlung in the spectral range of 8–18 nm was corrected for the wavelength-dependent instrument efficiency. The resulting spectrum cannot be fit with a single temperature bremsstrahlung model, and the best fit is obtained using two temperatures of about 13 and $30\;$eV. The lower temperatures in the experiment can be explained by missing energy-loss channels in the simulations, as well as the inclusion of hot, non-Maxwellian electrons in the temperature calculation. Furthermore, we resolved the time-scale for laser-heating of hydrogen, and PIC results for laser–matter interaction were successfully tested against the experiment data.},
doi = {10.1088/0953-4075/48/22/224004},
journal = {Journal of Physics. B, Atomic, Molecular and Optical Physics},
number = 22,
volume = 48,
place = {United States},
year = {Fri Sep 25 00:00:00 EDT 2015},
month = {Fri Sep 25 00:00:00 EDT 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 4 works
Citation information provided by
Web of Science

Save / Share: