DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Polar-direct-drive experiments on the National Ignition Facility

Abstract

To support direct-drive inertial confinement fusion experiments at the National Ignition Facility (NIF) [G. H. Miller, E. I. Moses, and C. R. Wuest, Opt. Eng. 43, 2841 (2004)] in its indirect-drive beam configuration, the polar-direct-drive (PDD) concept [S. Skupsky et al., Phys. Plasmas 11, 2763 (2004)] has been proposed. Ignition in PDD geometry requires direct-drive–specific beam smoothing, phase plates, and repointing the NIF beams toward the equator to ensure symmetric target irradiation. First experiments to study the energetics and preheat in PDD implosions at the NIF have been performed. These experiments utilize the NIF in its current configuration, including beam geometry, phase plates, and beam smoothing. Room-temperature, 2.2-mm-diam plastic shells filled with D2 gas were imploded with total drive energies ranging from ~500-750 kJ with peak powers of 120 to 180 TW and peak on-target irradiances at the initial target radius from 8 x 1014 to 1.2 x 1015 W/cm2. Results from these initial experiments are presented, including measurements of shell trajectory, implosion symmetry, and the level of hot-electron preheat in plastic and Si ablators. Experiments are simulated with the 2-D hydrodynamics code DRACO including a full 3-D ray-trace to model oblique beams, and models for nonlocal electron transport andmore » cross-beam energy transport (CBET). These simulations indicate that CBET affects the shell symmetry and leads to a loss of energy imparted onto the shell, consistent with the experimental data.« less

Authors:
ORCiD logo [1];  [1];  [1];  [2];  [1];  [1]; ORCiD logo [1];  [1];  [1];  [1]; ORCiD logo [1]; ORCiD logo [3];  [1];  [1];  [1];  [2];  [1]; ORCiD logo [1];  [1];  [1] more »; ORCiD logo [1];  [1];  [4]; ORCiD logo [5];  [1];  [1];  [1];  [2];  [3];  [1];  [4];  [1];  [4];  [1];  [2];  [2];  [2]; ORCiD logo [2];  [1];  [1];  [2];  [1]; ORCiD logo [2]; ORCiD logo [4];  [3];  [5];  [2];  [5];  [1];  [6];  [2];  [3];  [2];  [1];  [1];  [1];  [1]; ORCiD logo [1] « less
  1. Lab. for Laser Energetics, University of Rochester, Rochester, NY (United States)
  2. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  3. U. S. Naval Research Lab., Washington, DC (United States)
  4. General Atomics, San Diego, CA (United States)
  5. MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States)
  6. U. S. Naval Research Lab., Washington, DC 20375, (United States)
Publication Date:
Research Org.:
Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1182632
Alternate Identifier(s):
OSTI ID: 1228221; OSTI ID: 1249141
Report Number(s):
LLNL-JRNL-664443
Journal ID: ISSN 1070-664X; PHPAEN
Grant/Contract Number:  
NA0001857; NA0001944; AC52-07NA27344
Resource Type:
Accepted Manuscript
Journal Name:
Physics of Plasmas
Additional Journal Information:
Journal Volume: 22; Journal Issue: 5; Journal ID: ISSN 1070-664X
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; 42 ENGINEERING; 70 PLASMA PHYSICS AND FUSION

Citation Formats

Hohenberger, M., Radha, P. B., Myatt, J. F., LePape, S., Marozas, J. A., Marshall, F. J., Michel, D. T., Regan, S. P., Seka, W., Shvydky, A., Sangster, T. C., Bates, J. W., Betti, R., Boehly, T. R., Bonino, M. J., Casey, D. T., Collins, T. J. B., Craxton, R. S., Delettrez, J. A., Edgell, D. H., Epstein, R., Fiksel, G., Fitzsimmons, P., Frenje, J. A., Froula, D. H., Goncharov, V. N., Harding, D. R., Kalantar, D. H., Karasik, M., Kessler, T. J., Kilkenny, J. D., Knauer, J. P., Kurz, C., Lafon, M., LaFortune, K. N., MacGowan, B. J., Mackinnon, A. J., MacPhee, A. G., McCrory, R. L., McKenty, P. W., Meeker, J. F., Meyerhofer, D. D., Nagel, S. R., Nikroo, A., Obenschain, S., Petrasso, R. D., Ralph, J. E., Rinderknecht, H. G., Rosenberg, M. J., Schmitt, A. J., Wallace, R. J., Weaver, J., Widmayer, C., Skupsky, S., Solodov, A. A., Stoeckl, C., Yaakobi, B., and Zuegel, J. D. Polar-direct-drive experiments on the National Ignition Facility. United States: N. p., 2015. Web. doi:10.1063/1.4920958.
Hohenberger, M., Radha, P. B., Myatt, J. F., LePape, S., Marozas, J. A., Marshall, F. J., Michel, D. T., Regan, S. P., Seka, W., Shvydky, A., Sangster, T. C., Bates, J. W., Betti, R., Boehly, T. R., Bonino, M. J., Casey, D. T., Collins, T. J. B., Craxton, R. S., Delettrez, J. A., Edgell, D. H., Epstein, R., Fiksel, G., Fitzsimmons, P., Frenje, J. A., Froula, D. H., Goncharov, V. N., Harding, D. R., Kalantar, D. H., Karasik, M., Kessler, T. J., Kilkenny, J. D., Knauer, J. P., Kurz, C., Lafon, M., LaFortune, K. N., MacGowan, B. J., Mackinnon, A. J., MacPhee, A. G., McCrory, R. L., McKenty, P. W., Meeker, J. F., Meyerhofer, D. D., Nagel, S. R., Nikroo, A., Obenschain, S., Petrasso, R. D., Ralph, J. E., Rinderknecht, H. G., Rosenberg, M. J., Schmitt, A. J., Wallace, R. J., Weaver, J., Widmayer, C., Skupsky, S., Solodov, A. A., Stoeckl, C., Yaakobi, B., & Zuegel, J. D. Polar-direct-drive experiments on the National Ignition Facility. United States. https://doi.org/10.1063/1.4920958
Hohenberger, M., Radha, P. B., Myatt, J. F., LePape, S., Marozas, J. A., Marshall, F. J., Michel, D. T., Regan, S. P., Seka, W., Shvydky, A., Sangster, T. C., Bates, J. W., Betti, R., Boehly, T. R., Bonino, M. J., Casey, D. T., Collins, T. J. B., Craxton, R. S., Delettrez, J. A., Edgell, D. H., Epstein, R., Fiksel, G., Fitzsimmons, P., Frenje, J. A., Froula, D. H., Goncharov, V. N., Harding, D. R., Kalantar, D. H., Karasik, M., Kessler, T. J., Kilkenny, J. D., Knauer, J. P., Kurz, C., Lafon, M., LaFortune, K. N., MacGowan, B. J., Mackinnon, A. J., MacPhee, A. G., McCrory, R. L., McKenty, P. W., Meeker, J. F., Meyerhofer, D. D., Nagel, S. R., Nikroo, A., Obenschain, S., Petrasso, R. D., Ralph, J. E., Rinderknecht, H. G., Rosenberg, M. J., Schmitt, A. J., Wallace, R. J., Weaver, J., Widmayer, C., Skupsky, S., Solodov, A. A., Stoeckl, C., Yaakobi, B., and Zuegel, J. D. Mon . "Polar-direct-drive experiments on the National Ignition Facility". United States. https://doi.org/10.1063/1.4920958. https://www.osti.gov/servlets/purl/1182632.
@article{osti_1182632,
title = {Polar-direct-drive experiments on the National Ignition Facility},
author = {Hohenberger, M. and Radha, P. B. and Myatt, J. F. and LePape, S. and Marozas, J. A. and Marshall, F. J. and Michel, D. T. and Regan, S. P. and Seka, W. and Shvydky, A. and Sangster, T. C. and Bates, J. W. and Betti, R. and Boehly, T. R. and Bonino, M. J. and Casey, D. T. and Collins, T. J. B. and Craxton, R. S. and Delettrez, J. A. and Edgell, D. H. and Epstein, R. and Fiksel, G. and Fitzsimmons, P. and Frenje, J. A. and Froula, D. H. and Goncharov, V. N. and Harding, D. R. and Kalantar, D. H. and Karasik, M. and Kessler, T. J. and Kilkenny, J. D. and Knauer, J. P. and Kurz, C. and Lafon, M. and LaFortune, K. N. and MacGowan, B. J. and Mackinnon, A. J. and MacPhee, A. G. and McCrory, R. L. and McKenty, P. W. and Meeker, J. F. and Meyerhofer, D. D. and Nagel, S. R. and Nikroo, A. and Obenschain, S. and Petrasso, R. D. and Ralph, J. E. and Rinderknecht, H. G. and Rosenberg, M. J. and Schmitt, A. J. and Wallace, R. J. and Weaver, J. and Widmayer, C. and Skupsky, S. and Solodov, A. A. and Stoeckl, C. and Yaakobi, B. and Zuegel, J. D.},
abstractNote = {To support direct-drive inertial confinement fusion experiments at the National Ignition Facility (NIF) [G. H. Miller, E. I. Moses, and C. R. Wuest, Opt. Eng. 43, 2841 (2004)] in its indirect-drive beam configuration, the polar-direct-drive (PDD) concept [S. Skupsky et al., Phys. Plasmas 11, 2763 (2004)] has been proposed. Ignition in PDD geometry requires direct-drive–specific beam smoothing, phase plates, and repointing the NIF beams toward the equator to ensure symmetric target irradiation. First experiments to study the energetics and preheat in PDD implosions at the NIF have been performed. These experiments utilize the NIF in its current configuration, including beam geometry, phase plates, and beam smoothing. Room-temperature, 2.2-mm-diam plastic shells filled with D2 gas were imploded with total drive energies ranging from ~500-750 kJ with peak powers of 120 to 180 TW and peak on-target irradiances at the initial target radius from 8 x 1014 to 1.2 x 1015 W/cm2. Results from these initial experiments are presented, including measurements of shell trajectory, implosion symmetry, and the level of hot-electron preheat in plastic and Si ablators. Experiments are simulated with the 2-D hydrodynamics code DRACO including a full 3-D ray-trace to model oblique beams, and models for nonlocal electron transport and cross-beam energy transport (CBET). These simulations indicate that CBET affects the shell symmetry and leads to a loss of energy imparted onto the shell, consistent with the experimental data.},
doi = {10.1063/1.4920958},
journal = {Physics of Plasmas},
number = 5,
volume = 22,
place = {United States},
year = {Mon May 11 00:00:00 EDT 2015},
month = {Mon May 11 00:00:00 EDT 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 46 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Theory and simulation of stimulated Brillouin scatter excited by nonabsorbed light in laser fusion systems
journal, January 1981


Polar-drive implosions on OMEGA and the National Ignition Facility
journal, May 2013

  • Radha, P. B.; Marshall, F. J.; Marozas, J. A.
  • Physics of Plasmas, Vol. 20, Issue 5
  • DOI: 10.1063/1.4803083

Parametric plasmon-photon interactions
journal, June 1966


A polar-drive–ignition design for the National Ignition Facility
journal, May 2012

  • Collins, T. J. B.; Marozas, J. A.; Anderson, K. S.
  • Physics of Plasmas, Vol. 19, Issue 5
  • DOI: 10.1063/1.3693969

Direct Measurement of Energetic Electrons Coupling to an Imploding Low-Adiabat Inertial Confinement Fusion Capsule
journal, March 2012


Two-plasmon-decay instability in direct-drive inertial confinement fusion experiments
journal, May 2009

  • Seka, W.; Edgell, D. H.; Myatt, J. F.
  • Physics of Plasmas, Vol. 16, Issue 5
  • DOI: 10.1063/1.3125242

The dynamics of hot-electron heating in direct-drive-implosion experiments caused by two-plasmon-decay instability
journal, February 2012

  • Myatt, J. F.; Zhang, J.; Delettrez, J. A.
  • Physics of Plasmas, Vol. 19, Issue 2
  • DOI: 10.1063/1.3683004

Improving the hot-spot pressure and demonstrating ignition hydrodynamic equivalence in cryogenic deuterium–tritium implosions on OMEGA
journal, May 2014

  • Goncharov, V. N.; Sangster, T. C.; Betti, R.
  • Physics of Plasmas, Vol. 21, Issue 5
  • DOI: 10.1063/1.4876618

Increasing Hydrodynamic Efficiency by Reducing Cross-Beam Energy Transfer in Direct-Drive-Implosion Experiments
journal, March 2012


Reduction of laser imprinting using polarization smoothing on a solid-state fusion laser
journal, April 1999

  • Boehly, T. R.; Smalyuk, V. A.; Meyerhofer, D. D.
  • Journal of Applied Physics, Vol. 85, Issue 7
  • DOI: 10.1063/1.369702

Rayleigh-Taylor Instability and Laser-Pellet Fusion
journal, September 1974


Direct drive double shell target implosion hydrodynamics on OMEGA
journal, June 2005

  • Kyrala, George A.; Delamater, Norman; Wilson, Douglas
  • Laser and Particle Beams, Vol. 23, Issue 2
  • DOI: 10.1017/S0263034605050330

On the inhomogeneous two-plasmon instability
journal, January 1983


Point design targets, specifications, and requirements for the 2010 ignition campaign on the National Ignition Facility
journal, May 2011

  • Haan, S. W.; Lindl, J. D.; Callahan, D. A.
  • Physics of Plasmas, Vol. 18, Issue 5
  • DOI: 10.1063/1.3592169

Design and modeling of ignition targets for the National Ignition Facility
journal, June 1995

  • Haan, Steven W.; Pollaine, Stephen M.; Lindl, John D.
  • Physics of Plasmas, Vol. 2, Issue 6
  • DOI: 10.1063/1.871209

Measured hot-electron intensity thresholds quantified by a two-plasmon-decay resonant common-wave gain in various experimental configurations
journal, May 2013

  • Michel, D. T.; Maximov, A. V.; Short, R. W.
  • Physics of Plasmas, Vol. 20, Issue 5
  • DOI: 10.1063/1.4803090

Experimental reduction of laser imprinting and Rayleigh–Taylor growth in spherically compressed, medium-Z-doped plastic targets
journal, June 2012

  • Fiksel, G.; Hu, S. X.; Goncharov, V. A.
  • Physics of Plasmas, Vol. 19, Issue 6
  • DOI: 10.1063/1.4729732

Measuring symmetry of implosions in cryogenic Hohlraums at the NIF using gated x-ray detectors (invited)
journal, October 2010

  • Kyrala, G. A.; Dixit, S.; Glenzer, S.
  • Review of Scientific Instruments, Vol. 81, Issue 10
  • DOI: 10.1063/1.3481028

Measurements of the divergence of fast electrons in laser-irradiated spherical targets
journal, September 2013

  • Yaakobi, B.; Solodov, A. A.; Myatt, J. F.
  • Physics of Plasmas, Vol. 20, Issue 9
  • DOI: 10.1063/1.4824008

Laser–plasma interactions in ignition‐scale hohlraum plasmas
journal, May 1996

  • MacGowan, B. J.; Afeyan, B. B.; Back, C. A.
  • Physics of Plasmas, Vol. 3, Issue 5
  • DOI: 10.1063/1.872000

Multiple-beam laser–plasma interactions in inertial confinement fusion
journal, May 2014

  • Myatt, J. F.; Zhang, J.; Short, R. W.
  • Physics of Plasmas, Vol. 21, Issue 5
  • DOI: 10.1063/1.4878623

Development of a polar direct-drive platform for studying inertial confinement fusion implosion mix on the National Ignition Facility
journal, May 2013

  • Schmitt, Mark J.; Bradley, Paul A.; Cobble, James A.
  • Physics of Plasmas, Vol. 20, Issue 5
  • DOI: 10.1063/1.4803886

The National Ignition Facility neutron time-of-flight system and its initial performance (invited)
journal, October 2010

  • Glebov, V. Yu.; Sangster, T. C.; Stoeckl, C.
  • Review of Scientific Instruments, Vol. 81, Issue 10
  • DOI: 10.1063/1.3492351

Temporal Evolution of a Three-Wave Parametric Instability
journal, November 1973


Polar-direct-drive simulations and experiments
journal, May 2006

  • Marozas, J. A.; Marshall, F. J.; Craxton, R. S.
  • Physics of Plasmas, Vol. 13, Issue 5
  • DOI: 10.1063/1.2184949

Polar-direct-drive experiments on OMEGA
journal, June 2006

  • Marshall, F. J.; Craxton, R. S.; Bonino, M. J.
  • Journal de Physique IV (Proceedings), Vol. 133
  • DOI: 10.1051/jp4:2006133029

Dynamic Hohlraums as x-ray sources in high-energy density science
journal, January 2008

  • Hansen, J. F.; Glendinning, S. G.; Heeter, R. F.
  • Review of Scientific Instruments, Vol. 79, Issue 1
  • DOI: 10.1063/1.2804765

Fast-electron generation in long-scale-length plasmas
journal, January 2012

  • Yaakobi, B.; Chang, P. -Y.; Solodov, A.
  • Physics of Plasmas, Vol. 19, Issue 1
  • DOI: 10.1063/1.3676153

Time-resolved measurements of the hot-electron population in ignition-scale experiments on the National Ignition Facility (invited)
journal, November 2014

  • Hohenberger, M.; Albert, F.; Palmer, N. E.
  • Review of Scientific Instruments, Vol. 85, Issue 11
  • DOI: 10.1063/1.4890537

Three-dimensional HYDRA simulations of National Ignition Facility targets
journal, May 2001

  • Marinak, M. M.; Kerbel, G. D.; Gentile, N. A.
  • Physics of Plasmas, Vol. 8, Issue 5
  • DOI: 10.1063/1.1356740

Triple-picket warm plastic-shell implosions on OMEGA
journal, January 2011

  • Radha, P. B.; Stoeckl, C.; Goncharov, V. N.
  • Physics of Plasmas, Vol. 18, Issue 1
  • DOI: 10.1063/1.3544930

A novel particle time of flight diagnostic for measurements of shock- and compression-bang times in D 3 He and DT implosions at the NIF
journal, October 2012

  • Rinderknecht, H. G.; Johnson, M. Gatu; Zylstra, A. B.
  • Review of Scientific Instruments, Vol. 83, Issue 10
  • DOI: 10.1063/1.4731000

Saturation of the Two-Plasmon Decay Instability in Long-Scale-Length Plasmas Relevant to Direct-Drive Inertial Confinement Fusion
journal, April 2012


Polar direct drive on the National Ignition Facility
journal, May 2004

  • Skupsky, S.; Marozas, J. A.; Craxton, R. S.
  • Physics of Plasmas, Vol. 11, Issue 5, p. 2763-2770
  • DOI: 10.1063/1.1689665

Shell trajectory measurements from direct-drive implosion experiments
journal, October 2012

  • Michel, D. T.; Sorce, C.; Epstein, R.
  • Review of Scientific Instruments, Vol. 83, Issue 10
  • DOI: 10.1063/1.4732179

Improving cryogenic deuterium–tritium implosion performance on OMEGA
journal, May 2013

  • Sangster, T. C.; Goncharov, V. N.; Betti, R.
  • Physics of Plasmas, Vol. 20, Issue 5
  • DOI: 10.1063/1.4805088

Hot Electron Generation by the Two-Plasmon Decay Instability in the Laser-Plasma Interaction at 10.6 μm
journal, October 1980


Implosion Experiments using Glass Ablators for Direct-Drive Inertial Confinement Fusion
journal, April 2010


Demonstration of the Highest Deuterium-Tritium Areal Density Using Multiple-Picket Cryogenic Designs on OMEGA
journal, April 2010


Energy Deposition in Laser-Heated Plasmas
journal, March 1976


Crossed-beam energy transfer in direct-drive implosions
journal, May 2012

  • Igumenshchev, I. V.; Seka, W.; Edgell, D. H.
  • Physics of Plasmas, Vol. 19, Issue 5, Article No. 056314
  • DOI: 10.1063/1.4718594

The Physics of Inertial Fusion
book, January 2004


Performance of 1-THz-bandwidth, two-dimensional smoothing by spectral dispersion and polarization smoothing of high-power, solid-state laser beams
journal, January 2005

  • Regan, Sean P.; Marozas, John A.; Craxton, R. Stephen
  • Journal of the Optical Society of America B, Vol. 22, Issue 5
  • DOI: 10.1364/JOSAB.22.000998

Two-dimensional simulations of plastic-shell, direct-drive implosions on OMEGA
journal, March 2005

  • Radha, P. B.; Goncharov, V. N.; Collins, T. J. B.
  • Physics of Plasmas, Vol. 12, Issue 3
  • DOI: 10.1063/1.1857530

Laser Compression of Matter to Super-High Densities: Thermonuclear (CTR) Applications
journal, September 1972

  • Nuckolls, John; Wood, Lowell; Thiessen, Albert
  • Nature, Vol. 239, Issue 5368, p. 139-142
  • DOI: 10.1038/239139a0

Backscatter measurements for NIF ignition targets (invited)
journal, October 2010

  • Moody, J. D.; Datte, P.; Krauter, K.
  • Review of Scientific Instruments, Vol. 81, Issue 10
  • DOI: 10.1063/1.3491035

The National Ignition Facility
journal, December 2004


NIF final optics system: frequency conversion and beam conditioning
conference, May 2004

  • Wegner, Paul J.; Auerbach, Jerome M.; Biesiada, Jr., Thomas A.
  • Lasers and Applications in Science and Engineering, SPIE Proceedings
  • DOI: 10.1117/12.538481

Gated x-ray detector for the National Ignition Facility
journal, October 2006

  • Oertel, John A.; Aragonez, Robert; Archuleta, Tom
  • Review of Scientific Instruments, Vol. 77, Issue 10
  • DOI: 10.1063/1.2227439

Charged-particle spectroscopy for diagnosing shock ρR and strength in NIF implosions
journal, October 2012

  • Zylstra, A. B.; Frenje, J. A.; Séguin, F. H.
  • Review of Scientific Instruments, Vol. 83, Issue 10
  • DOI: 10.1063/1.4729672

Demonstration of the Improved Rocket Efficiency in Direct-Drive Implosions Using Different Ablator Materials
journal, December 2013


Laser–plasma interactions in direct-drive ignition plasmas
journal, November 2012


Experimental Validation of the Two-Plasmon-Decay Common-Wave Process
journal, October 2012


Progress in direct-drive inertial confinement fusion
journal, May 2008

  • McCrory, R. L.; Meyerhofer, D. D.; Betti, R.
  • Physics of Plasmas, Vol. 15, Issue 5
  • DOI: 10.1063/1.2837048

X-ray emission caused by Raman scattering in long-scale-length plasmas
journal, September 1989


SPECT3D – A multi-dimensional collisional-radiative code for generating diagnostic signatures based on hydrodynamics and PIC simulation output
journal, May 2007


Hydrodynamic instability growth and mix experiments at the National Ignition Facility
journal, May 2014

  • Smalyuk, V. A.; Barrios, M.; Caggiano, J. A.
  • Physics of Plasmas, Vol. 21, Issue 5
  • DOI: 10.1063/1.4872026

Multiple Beam Two-Plasmon Decay: Linear Threshold to Nonlinear Saturation in Three Dimensions
journal, September 2014


Polar-drive designs for optimizing neutron yields on the National Ignition Facility
journal, August 2008

  • Cok, A. M.; Craxton, R. S.; McKenty, P. W.
  • Physics of Plasmas, Vol. 15, Issue 8
  • DOI: 10.1063/1.2975213

National Ignition Facility laser performance status
journal, January 2007

  • Haynam, C. A.; Wegner, P. J.; Auerbach, J. M.
  • Applied Optics, Vol. 46, Issue 16
  • DOI: 10.1364/AO.46.003276

Multibeam Effects on Fast-Electron Generation from Two-Plasmon-Decay Instability
journal, June 2003


Electron-beam–deposited distributed polarization rotator for high-power laser applications
journal, January 2014

  • Oliver, J. B.; Kessler, T. J.; Smith, C.
  • Optics Express, Vol. 22, Issue 20
  • DOI: 10.1364/OE.22.023883

The National Ignition Facility
conference, May 2004

  • Miller, George H.
  • Lasers and Applications in Science and Engineering, SPIE Proceedings
  • DOI: 10.1117/12.538462

Energy Deposition in Laser-Heated Plasmas
journal, November 1976


Works referencing / citing this record:

Measurements of the ablation-front trajectory and low-mode nonuniformity in direct-drive implosions using x-ray self-emission shadowgraphy
journal, January 2015

  • Michel, D. T.; Davis, A. K.; Armstrong, W.
  • High Power Laser Science and Engineering, Vol. 3
  • DOI: 10.1017/hpl.2015.15

Inertial-confinement fusion with lasers
journal, May 2016

  • Betti, R.; Hurricane, O. A.
  • Nature Physics, Vol. 12, Issue 5
  • DOI: 10.1038/nphys3736

Direct drive: Simulations and results from the National Ignition Facility
journal, April 2016

  • Radha, P. B.; Hohenberger, M.; Edgell, D. H.
  • Physics of Plasmas, Vol. 23, Issue 5
  • DOI: 10.1063/1.4946023

Wavelength-detuning cross-beam energy transfer mitigation scheme for direct drive: Modeling and evidence from National Ignition Facility implosions
journal, May 2018

  • Marozas, J. A.; Hohenberger, M.; Rosenberg, M. J.
  • Physics of Plasmas, Vol. 25, Issue 5
  • DOI: 10.1063/1.5022181

Development and modeling of a polar-direct-drive exploding pusher platform at the National Ignition Facility
journal, July 2018

  • Ellison, C. Leland; Whitley, Heather D.; Brown, Colin R. D.
  • Physics of Plasmas, Vol. 25, Issue 7
  • DOI: 10.1063/1.5025724

Mitigation of cross-beam energy transfer in ignition-scale polar-direct-drive target designs for the National Ignition Facility
journal, July 2018

  • Collins, T. J. B.; Marozas, J. A.
  • Physics of Plasmas, Vol. 25, Issue 7
  • DOI: 10.1063/1.5039513

Spectral composition of thermonuclear particle and recoil nuclear emissions from laser fusion targets intended for modern ignition experiments
journal, June 2018

  • Gus’kov, S. Yu; Il’in, D. V.; Perlado, J. M.
  • Plasma Physics and Controlled Fusion, Vol. 60, Issue 8
  • DOI: 10.1088/1361-6587/aac739

Compression and burning of a direct-driven thermonuclear target under the conditions of inhomogeneous heating by a multi-beam megajoule laser
journal, January 2019

  • Bel’kov, S. A.; Bondarenko, S. V.; Demchenko, N. N.
  • Plasma Physics and Controlled Fusion, Vol. 61, Issue 2
  • DOI: 10.1088/1361-6587/aaf062

The National Direct-Drive Inertial Confinement Fusion Program
journal, December 2018


Hydrodynamic simulations of long-scale-length plasmas for two-plasmon-decay planar-target experiments on the NIF
journal, May 2016