DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Electronic and structural characteristics of zinc-blende wurtzite biphasic homostructure GaN nanowires

Abstract

Here, we report a new biphasic crystalline wurtzite/zinc-blende homostructure in gallium nitride nanowires. Cathodoluminescence was used to quantitatively measure the wurtzite and zinc-blende band gaps. High-resolution transmission electron microscopy was used to identify distinct wurtzite and zinc-blende crystalline phases within single nanowires through the use of selected area electron diffraction, electron dispersive spectroscopy, electron energy loss spectroscopy, and fast Fourier transform techniques. A mechanism for growth is identified.

Authors:
 [1];  [1];  [2];  [3];  [3];  [1];  [1];  [1];  [1];  [4]
  1. Michigan State Univ., East Lansing, MI (United States)
  2. Jet Propulsion Lab., Pasadena, CA (United States)
  3. Howard Univ., Washington, DC (United States)
  4. NASA Goddard Space Flight Center (GSFC), Greenbelt, MD (United States)
Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1249081
Report Number(s):
SAND-2016-1054J
Journal ID: ISSN 1530-6984; 619146
Grant/Contract Number:  
AC04-94AL85000
Resource Type:
Accepted Manuscript
Journal Name:
Nano Letters
Additional Journal Information:
Journal Volume: 7; Journal Issue: 5; Journal ID: ISSN 1530-6984
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
77 NANOSCIENCE AND NANOTECHNOLOGY; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Jacobs, Benjamin W., Ayres, Virginia M., Petkov, Mihail P., Halpern, Joshua B., He, Maoqi, Baczewski, Andrew D., McElroy, Kaylee, Crimp, Martin A., Zhang, Jiaming, and Shaw, Harry C. Electronic and structural characteristics of zinc-blende wurtzite biphasic homostructure GaN nanowires. United States: N. p., 2007. Web. doi:10.1021/nl062871y.
Jacobs, Benjamin W., Ayres, Virginia M., Petkov, Mihail P., Halpern, Joshua B., He, Maoqi, Baczewski, Andrew D., McElroy, Kaylee, Crimp, Martin A., Zhang, Jiaming, & Shaw, Harry C. Electronic and structural characteristics of zinc-blende wurtzite biphasic homostructure GaN nanowires. United States. https://doi.org/10.1021/nl062871y
Jacobs, Benjamin W., Ayres, Virginia M., Petkov, Mihail P., Halpern, Joshua B., He, Maoqi, Baczewski, Andrew D., McElroy, Kaylee, Crimp, Martin A., Zhang, Jiaming, and Shaw, Harry C. Sat . "Electronic and structural characteristics of zinc-blende wurtzite biphasic homostructure GaN nanowires". United States. https://doi.org/10.1021/nl062871y. https://www.osti.gov/servlets/purl/1249081.
@article{osti_1249081,
title = {Electronic and structural characteristics of zinc-blende wurtzite biphasic homostructure GaN nanowires},
author = {Jacobs, Benjamin W. and Ayres, Virginia M. and Petkov, Mihail P. and Halpern, Joshua B. and He, Maoqi and Baczewski, Andrew D. and McElroy, Kaylee and Crimp, Martin A. and Zhang, Jiaming and Shaw, Harry C.},
abstractNote = {Here, we report a new biphasic crystalline wurtzite/zinc-blende homostructure in gallium nitride nanowires. Cathodoluminescence was used to quantitatively measure the wurtzite and zinc-blende band gaps. High-resolution transmission electron microscopy was used to identify distinct wurtzite and zinc-blende crystalline phases within single nanowires through the use of selected area electron diffraction, electron dispersive spectroscopy, electron energy loss spectroscopy, and fast Fourier transform techniques. A mechanism for growth is identified.},
doi = {10.1021/nl062871y},
journal = {Nano Letters},
number = 5,
volume = 7,
place = {United States},
year = {Sat Apr 07 00:00:00 EDT 2007},
month = {Sat Apr 07 00:00:00 EDT 2007}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 35 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Single gallium nitride nanowire lasers
journal, September 2002

  • Johnson, Justin C.; Choi, Heon-Jin; Knutsen, Kelly P.
  • Nature Materials, Vol. 1, Issue 2
  • DOI: 10.1038/nmat728

Logic Circuits with Carbon Nanotube Transistors
journal, October 2001

  • Bachtold, Adrian; Hadley, Peter; Nakanishi, Takeshi
  • Science, Vol. 294, Issue 5545, p. 1317-1320
  • DOI: 10.1126/science.1065824

Focused-ion-beam platinum nanopatterning for GaN nanowires: Ohmic contacts and patterned growth
journal, May 2005

  • Nam, C. Y.; Kim, J. Y.; Fischer, J. E.
  • Applied Physics Letters, Vol. 86, Issue 19
  • DOI: 10.1063/1.1925775

Microstructure and Composition of Focused-Ion-Beam-Deposited Pt Contacts to GaN Nanowires
journal, February 2006


Corona Formation and Heat Loss on Venus by Coupled Upwelling and Delamination
journal, August 1997


Spontaneously grown GaN and AlGaN nanowires
journal, January 2006


THE PREPARATION AND PROPERTIES OF VAPOR‐DEPOSITED SINGLE‐CRYSTAL‐LINE GaN
journal, November 1969

  • Maruska, H. P.; Tietjen, J. J.
  • Applied Physics Letters, Vol. 15, Issue 10
  • DOI: 10.1063/1.1652845

Defects in GaN Nanowires
journal, June 2006

  • Tham, D.; Nam, C. -Y.; Fischer, J. E.
  • Advanced Functional Materials, Vol. 16, Issue 9
  • DOI: 10.1002/adfm.200500807

Applications of electron microscopy to the characterization of semiconductor nanowires
journal, September 2006


Energetics of H and NH 2 on GaN(101¯0) and implications for the origin of nanopipe defects
journal, August 1997


Ga adsorbate on (0001) GaN: In situ characterization with quadrupole mass spectrometry and reflection high-energy electron diffraction
journal, April 2006

  • Brown, Jay S.; Koblmüller, Gregor; Wu, Feng
  • Journal of Applied Physics, Vol. 99, Issue 7
  • DOI: 10.1063/1.2181415

Chemisorption of NH3 on GaN(0001)-(1×1)
journal, February 2000


Dissociative chemisorption of NH 3 molecules on GaN(0001) surfaces
journal, August 2001


Metal-organic molecular-beam epitaxy of GaN with trimethylgallium and ammonia: Experiment and modeling
journal, September 2005

  • Gherasoiu, I.; Nikishin, S.; Temkin, H.
  • Journal of Applied Physics, Vol. 98, Issue 5
  • DOI: 10.1063/1.2039276

Kinetics and gas-surface dynamics of GaN homoepitaxial growth using NH3-seeded supersonic molecular beams
journal, November 2001


A rate equation model for the growth of GaN on GaN(0001̄) by molecular beam epitaxy
journal, February 2000

  • Held, R.; Ishaug, B. E.; Parkhomovsky, A.
  • Journal of Applied Physics, Vol. 87, Issue 3
  • DOI: 10.1063/1.372000

Crystallographic alignment of high-density gallium nitride nanowire arrays
journal, July 2004

  • Kuykendall, Tevye; Pauzauskie, Peter J.; Zhang, Yanfeng
  • Nature Materials, Vol. 3, Issue 8, p. 524-528
  • DOI: 10.1038/nmat1177

Epitaxial core–shell and core–multishell nanowire heterostructures
journal, November 2002

  • Lauhon, Lincoln J.; Gudiksen, Mark S.; Wang, Deli
  • Nature, Vol. 420, Issue 6911, p. 57-61
  • DOI: 10.1038/nature01141

Works referencing / citing this record:

In situ analysis of catalyst composition during gold catalyzed GaAs nanowire growth
text, January 2019


Chemical Compositions and Distribution Characteristics of Cements in Longmaxi Formation Shales, Southwest China
journal, June 2019


Droplet epitaxy mediated growth of GaN nanostructures on Si (111) via plasma-assisted molecular beam epitaxy
journal, January 2018

  • Fedorov, V. V.; Bolshakov, A. D.; Kirilenko, D. A.
  • CrystEngComm, Vol. 20, Issue 24
  • DOI: 10.1039/c8ce00348c

In situ analysis of catalyst composition during gold catalyzed GaAs nanowire growth
journal, October 2019

  • Maliakkal, Carina B.; Jacobsson, Daniel; Tornberg, Marcus
  • Nature Communications, Vol. 10, Issue 1
  • DOI: 10.1038/s41467-019-12437-6

Linearly arranged polytypic CZTSSe nanocrystals
journal, December 2012

  • Fan, Feng-Jia; Wu, Liang; Gong, Ming
  • Scientific Reports, Vol. 2, Issue 1
  • DOI: 10.1038/srep00952

In situ analysis of catalyst composition during gold catalyzed GaAs nanowire growth
text, January 2019