skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: 9 GeV energy gain in a beam-driven plasma wakefield accelerator

Abstract

An electron beam has gained a maximum energy of 9 GeV per particle in a 1.3 m-long electron beam-driven plasma wakefield accelerator. The amount of charge accelerated in the spectral peak was 28.3 pC, and the root-mean-square energy spread was 5.0%. The mean accelerated charge and energy gain per particle of the 215 shot data set was 115 pC and 5.3 GeV, respectively, corresponding to an acceleration gradient of 4.0 GeV m -1 at the spectral peak. Moreover, the mean energy spread of the data set was 5.1%. Our results are consistent with the extrapolation of the previously reported energy gain results using a shorter, 36 cm-long plasma source to within 10%, evincing a non-evolving wake structure that can propagate distances of over a meter in length. Wake-loading effects were evident in the data through strong dependencies observed between various spectral properties and the amount of accelerated charge.

Authors:
 [1];  [2];  [1];  [3];  [1];  [4];  [3];  [1];  [1];  [1];  [1];  [3];  [5];  [3];  [3];  [1];  [3];  [1]
  1. SLAC National Accelerator Lab., Menlo Park, CA (United States)
  2. Univ. of Oslo (Norway)
  3. Univ. of California, Los Angeles, CA (United States)
  4. Univ. of Paris-Saclay, Palaiseau (France)
  5. Tsinghua Univ., Beijing (China)
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1249057
Grant/Contract Number:  
AC02-76SF00515; DE-SC0010064
Resource Type:
Accepted Manuscript
Journal Name:
Plasma Physics and Controlled Fusion
Additional Journal Information:
Journal Volume: 58; Journal Issue: 3; Journal ID: ISSN 0741-3335
Publisher:
IOP Science
Country of Publication:
United States
Language:
English
Subject:
43 PARTICLE ACCELERATORS

Citation Formats

Litos, M., Adli, E., Allen, J. M., An, W., Clarke, C. I., Corde, S., Clayton, C. E., Frederico, J., Gessner, S. J., Green, S. Z., Hogan, M. J., Joshi, C., Lu, W., Marsh, K. A., Mori, W. B., Schmeltz, M., Vafaei-Najafabadi, N., and Yakimenko, V. 9 GeV energy gain in a beam-driven plasma wakefield accelerator. United States: N. p., 2016. Web. doi:10.1088/0741-3335/58/3/034017.
Litos, M., Adli, E., Allen, J. M., An, W., Clarke, C. I., Corde, S., Clayton, C. E., Frederico, J., Gessner, S. J., Green, S. Z., Hogan, M. J., Joshi, C., Lu, W., Marsh, K. A., Mori, W. B., Schmeltz, M., Vafaei-Najafabadi, N., & Yakimenko, V. 9 GeV energy gain in a beam-driven plasma wakefield accelerator. United States. doi:10.1088/0741-3335/58/3/034017.
Litos, M., Adli, E., Allen, J. M., An, W., Clarke, C. I., Corde, S., Clayton, C. E., Frederico, J., Gessner, S. J., Green, S. Z., Hogan, M. J., Joshi, C., Lu, W., Marsh, K. A., Mori, W. B., Schmeltz, M., Vafaei-Najafabadi, N., and Yakimenko, V. Mon . "9 GeV energy gain in a beam-driven plasma wakefield accelerator". United States. doi:10.1088/0741-3335/58/3/034017. https://www.osti.gov/servlets/purl/1249057.
@article{osti_1249057,
title = {9 GeV energy gain in a beam-driven plasma wakefield accelerator},
author = {Litos, M. and Adli, E. and Allen, J. M. and An, W. and Clarke, C. I. and Corde, S. and Clayton, C. E. and Frederico, J. and Gessner, S. J. and Green, S. Z. and Hogan, M. J. and Joshi, C. and Lu, W. and Marsh, K. A. and Mori, W. B. and Schmeltz, M. and Vafaei-Najafabadi, N. and Yakimenko, V.},
abstractNote = {An electron beam has gained a maximum energy of 9 GeV per particle in a 1.3 m-long electron beam-driven plasma wakefield accelerator. The amount of charge accelerated in the spectral peak was 28.3 pC, and the root-mean-square energy spread was 5.0%. The mean accelerated charge and energy gain per particle of the 215 shot data set was 115 pC and 5.3 GeV, respectively, corresponding to an acceleration gradient of 4.0 GeV m-1 at the spectral peak. Moreover, the mean energy spread of the data set was 5.1%. Our results are consistent with the extrapolation of the previously reported energy gain results using a shorter, 36 cm-long plasma source to within 10%, evincing a non-evolving wake structure that can propagate distances of over a meter in length. Wake-loading effects were evident in the data through strong dependencies observed between various spectral properties and the amount of accelerated charge.},
doi = {10.1088/0741-3335/58/3/034017},
journal = {Plasma Physics and Controlled Fusion},
number = 3,
volume = 58,
place = {United States},
year = {2016},
month = {2}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 4 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

High-efficiency acceleration of an electron beam in a plasma wakefield accelerator
journal, November 2014


Acceleration of Electrons by the Interaction of a Bunched Electron Beam with a Plasma
journal, February 1985


Plasma based charged-particle accelerators
journal, November 2003

  • Bingham, R.; Mendonça, J. T.; Shukla, P. K.
  • Plasma Physics and Controlled Fusion, Vol. 46, Issue 1
  • DOI: 10.1088/0741-3335/46/1/R01

Acceleration and focusing of electrons in two-dimensional nonlinear plasma wake fields
journal, November 1991


A nonlinear theory for multidimensional relativistic plasma wave wakefields
journal, May 2006

  • Lu, W.; Huang, C.; Zhou, M.
  • Physics of Plasmas, Vol. 13, Issue 5
  • DOI: 10.1063/1.2203364

Nonlinear Theory for Relativistic Plasma Wakefields in the Blowout Regime
journal, April 2006


Energy doubling of 42 GeV electrons in a metre-scale plasma wakefield accelerator
journal, February 2007

  • Blumenfeld, Ian; Clayton, Christopher E.; Decker, Franz-Josef
  • Nature, Vol. 445, Issue 7129
  • DOI: 10.1038/nature05538

Multi-GeV Energy Gain in a Plasma-Wakefield Accelerator
journal, July 2005


Energy gain scaling with plasma length and density in the plasma wakefield accelerator
journal, April 2010


Meter-Scale Plasma-Wakefield Accelerator Driven by a Matched Electron Beam
journal, June 2004


Multi-gigaelectronvolt acceleration of positrons in a self-loaded plasma wakefield
journal, August 2015


Plasma Accelerators at the Energy Frontier and on Tabletops
journal, June 2003

  • Joshi, Chandrashekhar; Katsouleas, Thomas
  • Physics Today, Vol. 56, Issue 6
  • DOI: 10.1063/1.1595054

Surf's up at SLAC
journal, November 2014

  • Downer, Mike; Zgadzaj, Rafal
  • Nature, Vol. 515, Issue 7525
  • DOI: 10.1038/515040a

Positrons ride the wave
journal, August 2015


Plasma wakefield acceleration experiments at FACET
journal, May 2010


Photo-ionized lithium source for plasma accelerator applications
journal, June 1999

  • Muggli, P.; Marsh, K. A.; Wang, S.
  • IEEE Transactions on Plasma Science, Vol. 27, Issue 3
  • DOI: 10.1109/27.774685

Plasma production via field ionization
journal, October 2006

  • O’Connell, C. L.; Barnes, C. D.; Decker, F. -J.
  • Physical Review Special Topics - Accelerators and Beams, Vol. 9, Issue 10
  • DOI: 10.1103/PhysRevSTAB.9.101301

Particle-in-cell simulations of tunneling ionization effects in plasma-based accelerators
journal, May 2003

  • Bruhwiler, David L.; Dimitrov, D. A.; Cary, John R.
  • Physics of Plasmas, Vol. 10, Issue 5
  • DOI: 10.1063/1.1566027

Beam Loading in the Nonlinear Regime of Plasma-Based Acceleration
journal, September 2008


Experimental Observation of Plasma Wake-Field Acceleration
journal, July 1988


Cherenkov light-based beam profiling for ultrarelativistic electron beams
journal, May 2015

  • Adli, E.; Gessner, S. J.; Corde, S.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 783
  • DOI: 10.1016/j.nima.2015.02.003